The Resource A course in large sample theory, Thomas S. Ferguson
A course in large sample theory, Thomas S. Ferguson
Resource Information
The item A course in large sample theory, Thomas S. Ferguson represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item A course in large sample theory, Thomas S. Ferguson represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 1 library branch.
- Language
- eng
- Edition
- 1st ed.
- Extent
- ix, 245 pages
- Contents
-
- pt. 1. Basic Probability. 1. Modes of Convergence. 2. Partial Converses to Theorem 1. 3. Convergence in Law. 4. Laws of Large Numbers. 5. Central Limit Theorems
- pt. 2. Basic Statistical Large Sample Theory. 6. Slutsky Theorems. 7. Functions of the Sample Moments. 8. The Sample Correlation Coefficient. 9. Pearson's Chi-Square. 10. Asymptotic Power of the Pearson Chi-Square Test
- pt. 3. Special Topics. 11. Stationary m-Dependent Sequences. 12. Some Rank Statistics. 13. Asymptotic Distribution of Sample Quantiles. 14. Asymptotic Theory of Extreme Order Statistics. 15. Asymptotic Joint Distributions of Extrema
- pt. 4. Efficient Estimation and Testing. 16. A Uniform Strong Law of Large Numbers. 17. Strong Consistency of Maximum-Likelihood Estimates. 18. Asymptotic Normality of the Maximum-Likelihood Estimate. 19. The Cramer-Rao Lower Bound. 20. Asymptotic Efficiency. 21. Asymptotic Normality of Posterior Distributions
- Isbn
- 9780412043710
- Label
- A course in large sample theory
- Title
- A course in large sample theory
- Statement of responsibility
- Thomas S. Ferguson
- Language
- eng
- Cataloging source
- DLC
- http://library.link/vocab/creatorDate
- 1929-
- http://library.link/vocab/creatorName
- Ferguson, Thomas S.
- Dewey number
- 519.5/2
- Index
- index present
- LC call number
- QA276.6
- LC item number
- .F466 1996
- Literary form
- non fiction
- Nature of contents
- bibliography
- Series statement
- Chapman & Hall texts in statistical science
- http://library.link/vocab/subjectName
-
- Sampling (Statistics)
- Asymptotic distribution (Probability theory)
- Law of large numbers
- Sampling (Statistics)
- Asymptotic distribution (Probability theory)
- Law of large numbers
- Label
- A course in large sample theory, Thomas S. Ferguson
- Bibliography note
- Includes bibliographical references (pages 236-237) and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- pt. 1. Basic Probability. 1. Modes of Convergence. 2. Partial Converses to Theorem 1. 3. Convergence in Law. 4. Laws of Large Numbers. 5. Central Limit Theorems -- pt. 2. Basic Statistical Large Sample Theory. 6. Slutsky Theorems. 7. Functions of the Sample Moments. 8. The Sample Correlation Coefficient. 9. Pearson's Chi-Square. 10. Asymptotic Power of the Pearson Chi-Square Test -- pt. 3. Special Topics. 11. Stationary m-Dependent Sequences. 12. Some Rank Statistics. 13. Asymptotic Distribution of Sample Quantiles. 14. Asymptotic Theory of Extreme Order Statistics. 15. Asymptotic Joint Distributions of Extrema -- pt. 4. Efficient Estimation and Testing. 16. A Uniform Strong Law of Large Numbers. 17. Strong Consistency of Maximum-Likelihood Estimates. 18. Asymptotic Normality of the Maximum-Likelihood Estimate. 19. The Cramer-Rao Lower Bound. 20. Asymptotic Efficiency. 21. Asymptotic Normality of Posterior Distributions
- Control code
- 36104352
- Dimensions
- 24 cm
- Edition
- 1st ed.
- Extent
- ix, 245 pages
- Isbn
- 9780412043710
- Isbn Type
- (pbk. : acid-free paper)
- Lccn
- 96086138
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Label
- A course in large sample theory, Thomas S. Ferguson
- Bibliography note
- Includes bibliographical references (pages 236-237) and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- pt. 1. Basic Probability. 1. Modes of Convergence. 2. Partial Converses to Theorem 1. 3. Convergence in Law. 4. Laws of Large Numbers. 5. Central Limit Theorems -- pt. 2. Basic Statistical Large Sample Theory. 6. Slutsky Theorems. 7. Functions of the Sample Moments. 8. The Sample Correlation Coefficient. 9. Pearson's Chi-Square. 10. Asymptotic Power of the Pearson Chi-Square Test -- pt. 3. Special Topics. 11. Stationary m-Dependent Sequences. 12. Some Rank Statistics. 13. Asymptotic Distribution of Sample Quantiles. 14. Asymptotic Theory of Extreme Order Statistics. 15. Asymptotic Joint Distributions of Extrema -- pt. 4. Efficient Estimation and Testing. 16. A Uniform Strong Law of Large Numbers. 17. Strong Consistency of Maximum-Likelihood Estimates. 18. Asymptotic Normality of the Maximum-Likelihood Estimate. 19. The Cramer-Rao Lower Bound. 20. Asymptotic Efficiency. 21. Asymptotic Normality of Posterior Distributions
- Control code
- 36104352
- Dimensions
- 24 cm
- Edition
- 1st ed.
- Extent
- ix, 245 pages
- Isbn
- 9780412043710
- Isbn Type
- (pbk. : acid-free paper)
- Lccn
- 96086138
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/A-course-in-large-sample-theory-Thomas-S./PLuLhKnUv4g/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/A-course-in-large-sample-theory-Thomas-S./PLuLhKnUv4g/">A course in large sample theory, Thomas S. Ferguson</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item A course in large sample theory, Thomas S. Ferguson
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/A-course-in-large-sample-theory-Thomas-S./PLuLhKnUv4g/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/A-course-in-large-sample-theory-Thomas-S./PLuLhKnUv4g/">A course in large sample theory, Thomas S. Ferguson</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>