The Resource A modern theory of random variation : with applications in stochastic calculus, financial mathematics, and Feynman integration, Patrick Muldowney
A modern theory of random variation : with applications in stochastic calculus, financial mathematics, and Feynman integration, Patrick Muldowney
Resource Information
The item A modern theory of random variation : with applications in stochastic calculus, financial mathematics, and Feynman integration, Patrick Muldowney represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 2 library branches.
Resource Information
The item A modern theory of random variation : with applications in stochastic calculus, financial mathematics, and Feynman integration, Patrick Muldowney represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 2 library branches.
- Summary
- "This book presents a self-contained study of the Riemann approach to the theory of random variation and assumes only some familiarity with probability or statistical analysis, basic Riemann integration, and mathematical proofs. The author focuses on non-absolute convergence in conjunction with random variation"--
- Language
- eng
- Extent
- 1 online resource
- Contents
-
- A Modern Theory of Random Variation: With Applications in Stochastic Calculus, Financial Mathematics, and Feynman Integration; Contents; Preface; Symbols; 1 Prologue; 1.1 About This Book; 1.2 About the Concepts; 1.3 About the Notation; 1.4 Riemann, Stieltjes, and Burkill Integrals; 1.5 The -Complete Integrals; 1.6 Riemann Sums in Statistical Calculation; 1.7 Random Variability; 1.8 Contingent and Elementary Forms; 1.9 Comparison With Axiomatic Theory; 1.10 What Is Probability?; 1.11 Joint Variability; 1.12 Independence; 1.13 Stochastic Processes; 2 Introduction
- 2.1 Riemann Sums in Integration2.2 The -Complete Integrals in Domain]0,1]; 2.3 Divisibility of the Domain]0,1]; 2.4 Fundamental Theorem of Calculus; 2.5 What Is Integrability?; 2.6 Riemann Sums and Random Variability; 2.7 How to Integrate a Function; 2.8 Extension of the Lebesgue Integral; 2.9 Riemann Sums in Basic Probability; 2.10 Variation and Outer Measure; 2.11 Outer Measure and Variation in [0,1]; 2.12 The Henstock Lemma; 2.13 Unbounded Sample Spaces; 2.14 Cauchy Extension of the Riemann Integral; 2.15 Integrability on]0, (infinity)[; 2.16 ""Negative Probability""
- 4.7 Variation of a Function4.8 Variation and Integral; 4.9 Rt{u00D7}N(T)-Variation; 4.10 Introduction to Fubini's Theorem; 4.11 Fubini's Theorem; 4.12 Limits of Integrals; 4.13 Limits of Non-Absolute Integrals; 4.14 Non-Integrable Functions; 4.15 Conclusion; 5 Random Variability; 5.1 Measurability of Sets; 5.2 Measurability of Random Variables; 5.3 Representation of Observables; 5.4 Basic Properties of Random Variables; 5.5 Inequalities for Random Variables; 5.6 Joint Random Variability; 5.7 Two or More Joint Observables; 5.8 Independence in Random Variability; 5.9 Laws of Large Numbers
- 5.10 Introduction to Central Limit Theorem5.11 Proof of Central Limit Theorem; 5.12 Probability Symbols; 5.13 Measurability and Probability; 5.14 The Calculus of Probabilities; 6 Gaussian Integrals; 6.1 Fresnel's Integral; 6.2 Evaluation of Fresnel's Integral; 6.3 Fresnel's Integral in Finite Dimensions; 6.4 Fresnel Distribution Function in Rn; 6.5 Infinite-Dimensional Fresnel Integral; 6.6 Integrability on Rt; 6.7 The Fresnel Function Is Vbg*; 6.8 Incremental Fresnel Integral; 6.9 Fresnel Continuity Properties; 7 Brownian Motion; 7.1 c-Brownian Motion; 7.2 Brownian Motion With Drift
- Isbn
- 9781118166406
- Label
- A modern theory of random variation : with applications in stochastic calculus, financial mathematics, and Feynman integration
- Title
- A modern theory of random variation
- Title remainder
- with applications in stochastic calculus, financial mathematics, and Feynman integration
- Statement of responsibility
- Patrick Muldowney
- Language
- eng
- Summary
- "This book presents a self-contained study of the Riemann approach to the theory of random variation and assumes only some familiarity with probability or statistical analysis, basic Riemann integration, and mathematical proofs. The author focuses on non-absolute convergence in conjunction with random variation"--
- Assigning source
- Provided by publisher
- Cataloging source
- DLC
- http://library.link/vocab/creatorDate
- 1946-
- http://library.link/vocab/creatorName
- Muldowney, P.
- Dewey number
- 519.2/3
- Index
- index present
- LC call number
- QA273
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- http://library.link/vocab/subjectName
-
- Random variables
- Calculus of variations
- Path integrals
- Mathematical analysis
- Calculus of variations
- Mathematical analysis
- MATHEMATICS
- Path integrals
- Random variables
- MATHEMATICS
- Calculus of variations
- Mathematical analysis
- Path integrals
- Random variables
- Label
- A modern theory of random variation : with applications in stochastic calculus, financial mathematics, and Feynman integration, Patrick Muldowney
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- A Modern Theory of Random Variation: With Applications in Stochastic Calculus, Financial Mathematics, and Feynman Integration; Contents; Preface; Symbols; 1 Prologue; 1.1 About This Book; 1.2 About the Concepts; 1.3 About the Notation; 1.4 Riemann, Stieltjes, and Burkill Integrals; 1.5 The -Complete Integrals; 1.6 Riemann Sums in Statistical Calculation; 1.7 Random Variability; 1.8 Contingent and Elementary Forms; 1.9 Comparison With Axiomatic Theory; 1.10 What Is Probability?; 1.11 Joint Variability; 1.12 Independence; 1.13 Stochastic Processes; 2 Introduction
- 2.1 Riemann Sums in Integration2.2 The -Complete Integrals in Domain]0,1]; 2.3 Divisibility of the Domain]0,1]; 2.4 Fundamental Theorem of Calculus; 2.5 What Is Integrability?; 2.6 Riemann Sums and Random Variability; 2.7 How to Integrate a Function; 2.8 Extension of the Lebesgue Integral; 2.9 Riemann Sums in Basic Probability; 2.10 Variation and Outer Measure; 2.11 Outer Measure and Variation in [0,1]; 2.12 The Henstock Lemma; 2.13 Unbounded Sample Spaces; 2.14 Cauchy Extension of the Riemann Integral; 2.15 Integrability on]0, (infinity)[; 2.16 ""Negative Probability""
- 4.7 Variation of a Function4.8 Variation and Integral; 4.9 Rt{u00D7}N(T)-Variation; 4.10 Introduction to Fubini's Theorem; 4.11 Fubini's Theorem; 4.12 Limits of Integrals; 4.13 Limits of Non-Absolute Integrals; 4.14 Non-Integrable Functions; 4.15 Conclusion; 5 Random Variability; 5.1 Measurability of Sets; 5.2 Measurability of Random Variables; 5.3 Representation of Observables; 5.4 Basic Properties of Random Variables; 5.5 Inequalities for Random Variables; 5.6 Joint Random Variability; 5.7 Two or More Joint Observables; 5.8 Independence in Random Variability; 5.9 Laws of Large Numbers
- 5.10 Introduction to Central Limit Theorem5.11 Proof of Central Limit Theorem; 5.12 Probability Symbols; 5.13 Measurability and Probability; 5.14 The Calculus of Probabilities; 6 Gaussian Integrals; 6.1 Fresnel's Integral; 6.2 Evaluation of Fresnel's Integral; 6.3 Fresnel's Integral in Finite Dimensions; 6.4 Fresnel Distribution Function in Rn; 6.5 Infinite-Dimensional Fresnel Integral; 6.6 Integrability on Rt; 6.7 The Fresnel Function Is Vbg*; 6.8 Incremental Fresnel Integral; 6.9 Fresnel Continuity Properties; 7 Brownian Motion; 7.1 c-Brownian Motion; 7.2 Brownian Motion With Drift
- Control code
- 778857698
- Dimensions
- unknown
- Extent
- 1 online resource
- Form of item
- online
- Isbn
- 9781118166406
- Lccn
- 2012008712
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other control number
- ebc861717
- http://library.link/vocab/ext/overdrive/overdriveId
- 414750
- Specific material designation
- remote
- System control number
- (OCoLC)778857698
- Label
- A modern theory of random variation : with applications in stochastic calculus, financial mathematics, and Feynman integration, Patrick Muldowney
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- A Modern Theory of Random Variation: With Applications in Stochastic Calculus, Financial Mathematics, and Feynman Integration; Contents; Preface; Symbols; 1 Prologue; 1.1 About This Book; 1.2 About the Concepts; 1.3 About the Notation; 1.4 Riemann, Stieltjes, and Burkill Integrals; 1.5 The -Complete Integrals; 1.6 Riemann Sums in Statistical Calculation; 1.7 Random Variability; 1.8 Contingent and Elementary Forms; 1.9 Comparison With Axiomatic Theory; 1.10 What Is Probability?; 1.11 Joint Variability; 1.12 Independence; 1.13 Stochastic Processes; 2 Introduction
- 2.1 Riemann Sums in Integration2.2 The -Complete Integrals in Domain]0,1]; 2.3 Divisibility of the Domain]0,1]; 2.4 Fundamental Theorem of Calculus; 2.5 What Is Integrability?; 2.6 Riemann Sums and Random Variability; 2.7 How to Integrate a Function; 2.8 Extension of the Lebesgue Integral; 2.9 Riemann Sums in Basic Probability; 2.10 Variation and Outer Measure; 2.11 Outer Measure and Variation in [0,1]; 2.12 The Henstock Lemma; 2.13 Unbounded Sample Spaces; 2.14 Cauchy Extension of the Riemann Integral; 2.15 Integrability on]0, (infinity)[; 2.16 ""Negative Probability""
- 4.7 Variation of a Function4.8 Variation and Integral; 4.9 Rt{u00D7}N(T)-Variation; 4.10 Introduction to Fubini's Theorem; 4.11 Fubini's Theorem; 4.12 Limits of Integrals; 4.13 Limits of Non-Absolute Integrals; 4.14 Non-Integrable Functions; 4.15 Conclusion; 5 Random Variability; 5.1 Measurability of Sets; 5.2 Measurability of Random Variables; 5.3 Representation of Observables; 5.4 Basic Properties of Random Variables; 5.5 Inequalities for Random Variables; 5.6 Joint Random Variability; 5.7 Two or More Joint Observables; 5.8 Independence in Random Variability; 5.9 Laws of Large Numbers
- 5.10 Introduction to Central Limit Theorem5.11 Proof of Central Limit Theorem; 5.12 Probability Symbols; 5.13 Measurability and Probability; 5.14 The Calculus of Probabilities; 6 Gaussian Integrals; 6.1 Fresnel's Integral; 6.2 Evaluation of Fresnel's Integral; 6.3 Fresnel's Integral in Finite Dimensions; 6.4 Fresnel Distribution Function in Rn; 6.5 Infinite-Dimensional Fresnel Integral; 6.6 Integrability on Rt; 6.7 The Fresnel Function Is Vbg*; 6.8 Incremental Fresnel Integral; 6.9 Fresnel Continuity Properties; 7 Brownian Motion; 7.1 c-Brownian Motion; 7.2 Brownian Motion With Drift
- Control code
- 778857698
- Dimensions
- unknown
- Extent
- 1 online resource
- Form of item
- online
- Isbn
- 9781118166406
- Lccn
- 2012008712
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other control number
- ebc861717
- http://library.link/vocab/ext/overdrive/overdriveId
- 414750
- Specific material designation
- remote
- System control number
- (OCoLC)778857698
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/A-modern-theory-of-random-variation--with/fV25DHuCT0I/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/A-modern-theory-of-random-variation--with/fV25DHuCT0I/">A modern theory of random variation : with applications in stochastic calculus, financial mathematics, and Feynman integration, Patrick Muldowney</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item A modern theory of random variation : with applications in stochastic calculus, financial mathematics, and Feynman integration, Patrick Muldowney
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/A-modern-theory-of-random-variation--with/fV25DHuCT0I/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/A-modern-theory-of-random-variation--with/fV25DHuCT0I/">A modern theory of random variation : with applications in stochastic calculus, financial mathematics, and Feynman integration, Patrick Muldowney</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>