Coverart for item
The Resource An introduction to the mathematical theory of waves, Roger Knobel

An introduction to the mathematical theory of waves, Roger Knobel

Label
An introduction to the mathematical theory of waves
Title
An introduction to the mathematical theory of waves
Statement of responsibility
Roger Knobel
Creator
Subject
Language
eng
Summary
"Linear and nonlinear waves are a central part of the theory of PDEs. This book begins with a description of one-dimensional waves and their visualization through computer-aided techniques. Next, traveling waves are covered, such as solitary waves for the Klein-Gordon and KdV equations. Finally, the author gives a lucid discussion of waves arising from conservation laws, including shock and rarefaction waves. As an application, interesting models of traffic flow are used to illustrate conservation laws and wave phenomena." "This book is based on a course given by the author at the IAS/Park City Mathematics Institute. It is suitable for independent study by undergraduate students in mathematics, engineering, and science programs."--Jacket
Member of
Cataloging source
DLC
http://library.link/vocab/creatorDate
1962-
http://library.link/vocab/creatorName
Knobel, Roger
Dewey number
531/.1133
Illustrations
illustrations
Index
index present
LC call number
QA927
LC item number
.K693 2000
Literary form
non fiction
Nature of contents
bibliography
Series statement
  • Student mathematical library,
  • IAS/Park City mathematical subseries
Series volume
v. 3
http://library.link/vocab/subjectName
  • Wave-motion, Theory of
  • Mouvement ondulatoire, Théorie du
  • Partiële differentiaalvergelijkingen
  • Golven (algemeen, natuurkunde)
  • Mouvement ondulatoire, Théorie du
  • Mathematische Physik
  • Schwingung
  • Schwingungsgleichung
  • Welle
  • Wellenbewegung
  • Wellengleichung
Label
An introduction to the mathematical theory of waves, Roger Knobel
Instantiates
Publication
Bibliography note
Includes bibliographical references (pages 193-194) and index
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • pt. 2.
  • Traveling and Standing Waves
  • Ch. 4.
  • Traveling Waves
  • Ch. 5.
  • The Korteweg-deVries Equation
  • Ch. 6.
  • The Sine-Gordon Equation
  • Ch. 7.
  • The Wave Equation
  • pt. 1.
  • Ch. 8.
  • D'Alembert's Solution of the Wave Equation
  • Ch. 9.
  • Vibrations of a Semi-infinite String
  • Ch. 10.
  • Characteristic Lines of the Wave Equation
  • Ch. 11.
  • Standing Wave Solutions of the Wave Equation
  • Ch. 12.
  • Standing Waves of a Nonhomogeneous String
  • Introduction
  • Ch. 13.
  • Superposition of Standing Waves
  • Ch. 14.
  • Fourier Series and the Wave Equation
  • pt. 3.
  • Waves in Conservation Laws
  • Ch. 15.
  • Conservation Laws
  • Ch. 16.
  • Examples of Conservation Laws
  • Ch. 1.
  • Ch. 17.
  • The Method of Characteristics
  • Ch. 18.
  • Gradient Catastrophes and Breaking Times
  • Ch. 19.
  • Shock Waves
  • Ch. 20.
  • Shock Wave Example: Traffic at a Red Light
  • Ch. 21.
  • Shock Waves and the Viscosity Method
  • Introduction to Waves
  • Ch. 22.
  • Rarefaction Waves
  • Ch. 23.
  • An Example with Rarefaction and Shock Waves
  • Ch. 24.
  • Nonunique Solutions and the Entropy Condition
  • Ch. 25.
  • Weak Solutions of Conservation Laws
  • Ch. 2.
  • A Mathematical Representation of Waves
  • Ch. 3.
  • Partial Differential Equations
Control code
41967027
Dimensions
22 cm
Extent
xiv, 196 pages
Isbn
9780821820391
Isbn Type
(softcover : alk. paper)
Lccn
99039055
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other physical details
illustrations
System control number
(OCoLC)41967027
Label
An introduction to the mathematical theory of waves, Roger Knobel
Publication
Bibliography note
Includes bibliographical references (pages 193-194) and index
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • pt. 2.
  • Traveling and Standing Waves
  • Ch. 4.
  • Traveling Waves
  • Ch. 5.
  • The Korteweg-deVries Equation
  • Ch. 6.
  • The Sine-Gordon Equation
  • Ch. 7.
  • The Wave Equation
  • pt. 1.
  • Ch. 8.
  • D'Alembert's Solution of the Wave Equation
  • Ch. 9.
  • Vibrations of a Semi-infinite String
  • Ch. 10.
  • Characteristic Lines of the Wave Equation
  • Ch. 11.
  • Standing Wave Solutions of the Wave Equation
  • Ch. 12.
  • Standing Waves of a Nonhomogeneous String
  • Introduction
  • Ch. 13.
  • Superposition of Standing Waves
  • Ch. 14.
  • Fourier Series and the Wave Equation
  • pt. 3.
  • Waves in Conservation Laws
  • Ch. 15.
  • Conservation Laws
  • Ch. 16.
  • Examples of Conservation Laws
  • Ch. 1.
  • Ch. 17.
  • The Method of Characteristics
  • Ch. 18.
  • Gradient Catastrophes and Breaking Times
  • Ch. 19.
  • Shock Waves
  • Ch. 20.
  • Shock Wave Example: Traffic at a Red Light
  • Ch. 21.
  • Shock Waves and the Viscosity Method
  • Introduction to Waves
  • Ch. 22.
  • Rarefaction Waves
  • Ch. 23.
  • An Example with Rarefaction and Shock Waves
  • Ch. 24.
  • Nonunique Solutions and the Entropy Condition
  • Ch. 25.
  • Weak Solutions of Conservation Laws
  • Ch. 2.
  • A Mathematical Representation of Waves
  • Ch. 3.
  • Partial Differential Equations
Control code
41967027
Dimensions
22 cm
Extent
xiv, 196 pages
Isbn
9780821820391
Isbn Type
(softcover : alk. paper)
Lccn
99039055
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other physical details
illustrations
System control number
(OCoLC)41967027

Library Locations

    • Mathematical Sciences LibraryBorrow it
      104 Ellis Library, Columbia, MO, 65201, US
      38.944377 -92.326537
Processing Feedback ...