Coverart for item
The Resource Analysis for applied mathematics, Ward Cheney

Analysis for applied mathematics, Ward Cheney

Label
Analysis for applied mathematics
Title
Analysis for applied mathematics
Statement of responsibility
Ward Cheney
Creator
Subject
Language
eng
Member of
Cataloging source
DLC
http://library.link/vocab/creatorDate
1929-
http://library.link/vocab/creatorName
Cheney, E. W.
Dewey number
515
Illustrations
illustrations
Index
index present
LC call number
QA300
LC item number
.C4437 2001
Literary form
non fiction
Nature of contents
bibliography
Series statement
Graduate texts in mathematics
Series volume
208
http://library.link/vocab/subjectName
Mathematical analysis
Label
Analysis for applied mathematics, Ward Cheney
Instantiates
Publication
Bibliography note
Includes bibliographical references (pages 429-436) and index
Carrier category
volume
Carrier category code
nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
Ch. 1. Normed Linear Spaces -- 1.1. Definitions and Examples -- 1.2. Convexity, Convergence, Compactness, Completeness -- 1.3. Continuity, Open Sets, Closed Sets -- 1.4. More About Compactness -- 1.5. Linear Transformations -- 1.6. Zorn's Lemma, Hamel Bases, and the Hahn-Banach Theorem -- 1.7. The Baire Theorem and Uniform Boundedness -- 1.8. The Interior Mapping and Closed Mapping Theorems -- 1.9. Weak Convergence -- 1.10. Reflexive Spaces -- Ch. 2. Hilbert Spaces -- 2.1. Geometry -- 2.2. Orthogonality and Bases -- 2.3. Linear Functionals and Operators -- 2.4. Spectral Theory -- 2.5. Sturm-Liouville Theory -- Ch. 3. Calculus in Banach Spaces -- 3.1. The Frechet Derivative -- 3.2. The Chain Rule and Mean Value Theorems -- 3.3. Newton's Method -- 3.4. Implicit Function Theorems -- 3.5. Extremum Problems and Lagrange Multipliers -- 3.6. The Calculus of Variations -- Ch. 4. Basic Approximate Methods of Analysis -- 4.1. Discretization -- 4.2. The Method of Iteration -- 4.3. Methods Based on the Neumann Series -- 4.4. Projections and Projection Methods -- 4.5. The Galerkin Method -- 4.6. The Rayleigh-Ritz Method -- 4.7. Collocation Methods -- 4.8. Descent Methods -- 4.9. Conjugate Direction Methods -- 4.10. Methods Based on Homotopy and Continuation -- Ch. 5. Distributions -- 5.1. Definitions and Examples -- 5.2. Derivatives of Distributions -- 5.3. Convergence of Distributions -- 5.4. Multiplication of Distributions by Functions -- 5.5. Convolutions -- 5.6. Differential Operators -- 5.7. Distributions with Compact Support -- Ch. 6. The Fourier Transform -- 6.1. Definitions and Basic Properties -- 6.2. The Schwartz Space -- 6.3. The Inversion Theorems -- 6.4. The Plancherel Theorem -- 6.5. Applications of the Fourier Transform -- 6.6. Applications to Partial Differential Equations -- 6.7. Tempered Distributions -- 6.8. Sobolev Spaces -- Ch. 7. Additional Topics -- 7.1. Fixed-Point Theorems -- 7.2. Selection Theorems -- 7.3. Separation Theorems -- 7.4. The Arzela-Ascoli Theorems -- 7.5. Compact Operators and the Fredholm Theory -- 7.6. Topological Spaces -- 7.7. Linear Topological Spaces -- 7.8. Analytic Pitfalls -- Ch. 8. Measure and Integration -- 8.1. Extended Reals, Outer Measures, Measurable Spaces -- 8.2. Measures and Measure Spaces -- 8.3. Lebesgue Measure -- 8.4. Measurable Functions -- 8.5. The Integral for Nonnegative Functions -- 8.6. The Integral, Continued -- 8.7. The L[superscript p]-Spaces -- 8.8. The Radon-Nikodym Theorem -- 8.9. Signed Measures -- 8.10. Product Measures and Fubini's Theorem
Control code
45963278
Dimensions
25 cm
Extent
viii, 444 pages
Isbn
9780387952796
Isbn Type
(alk. paper)
Lccn
2001020440
Media category
unmediated
Media MARC source
rdamedia
Media type code
n
Other physical details
illustrations
Label
Analysis for applied mathematics, Ward Cheney
Publication
Bibliography note
Includes bibliographical references (pages 429-436) and index
Carrier category
volume
Carrier category code
nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
Ch. 1. Normed Linear Spaces -- 1.1. Definitions and Examples -- 1.2. Convexity, Convergence, Compactness, Completeness -- 1.3. Continuity, Open Sets, Closed Sets -- 1.4. More About Compactness -- 1.5. Linear Transformations -- 1.6. Zorn's Lemma, Hamel Bases, and the Hahn-Banach Theorem -- 1.7. The Baire Theorem and Uniform Boundedness -- 1.8. The Interior Mapping and Closed Mapping Theorems -- 1.9. Weak Convergence -- 1.10. Reflexive Spaces -- Ch. 2. Hilbert Spaces -- 2.1. Geometry -- 2.2. Orthogonality and Bases -- 2.3. Linear Functionals and Operators -- 2.4. Spectral Theory -- 2.5. Sturm-Liouville Theory -- Ch. 3. Calculus in Banach Spaces -- 3.1. The Frechet Derivative -- 3.2. The Chain Rule and Mean Value Theorems -- 3.3. Newton's Method -- 3.4. Implicit Function Theorems -- 3.5. Extremum Problems and Lagrange Multipliers -- 3.6. The Calculus of Variations -- Ch. 4. Basic Approximate Methods of Analysis -- 4.1. Discretization -- 4.2. The Method of Iteration -- 4.3. Methods Based on the Neumann Series -- 4.4. Projections and Projection Methods -- 4.5. The Galerkin Method -- 4.6. The Rayleigh-Ritz Method -- 4.7. Collocation Methods -- 4.8. Descent Methods -- 4.9. Conjugate Direction Methods -- 4.10. Methods Based on Homotopy and Continuation -- Ch. 5. Distributions -- 5.1. Definitions and Examples -- 5.2. Derivatives of Distributions -- 5.3. Convergence of Distributions -- 5.4. Multiplication of Distributions by Functions -- 5.5. Convolutions -- 5.6. Differential Operators -- 5.7. Distributions with Compact Support -- Ch. 6. The Fourier Transform -- 6.1. Definitions and Basic Properties -- 6.2. The Schwartz Space -- 6.3. The Inversion Theorems -- 6.4. The Plancherel Theorem -- 6.5. Applications of the Fourier Transform -- 6.6. Applications to Partial Differential Equations -- 6.7. Tempered Distributions -- 6.8. Sobolev Spaces -- Ch. 7. Additional Topics -- 7.1. Fixed-Point Theorems -- 7.2. Selection Theorems -- 7.3. Separation Theorems -- 7.4. The Arzela-Ascoli Theorems -- 7.5. Compact Operators and the Fredholm Theory -- 7.6. Topological Spaces -- 7.7. Linear Topological Spaces -- 7.8. Analytic Pitfalls -- Ch. 8. Measure and Integration -- 8.1. Extended Reals, Outer Measures, Measurable Spaces -- 8.2. Measures and Measure Spaces -- 8.3. Lebesgue Measure -- 8.4. Measurable Functions -- 8.5. The Integral for Nonnegative Functions -- 8.6. The Integral, Continued -- 8.7. The L[superscript p]-Spaces -- 8.8. The Radon-Nikodym Theorem -- 8.9. Signed Measures -- 8.10. Product Measures and Fubini's Theorem
Control code
45963278
Dimensions
25 cm
Extent
viii, 444 pages
Isbn
9780387952796
Isbn Type
(alk. paper)
Lccn
2001020440
Media category
unmediated
Media MARC source
rdamedia
Media type code
n
Other physical details
illustrations

Library Locations

    • Mathematical Sciences LibraryBorrow it
      104 Ellis Library, Columbia, MO, 65201, US
      38.944377 -92.326537
Processing Feedback ...