The Resource Applications of Lie groups to differential equations, Peter J. Olver
Applications of Lie groups to differential equations, Peter J. Olver
Resource Information
The item Applications of Lie groups to differential equations, Peter J. Olver represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Applications of Lie groups to differential equations, Peter J. Olver represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 1 library branch.
- Summary
-
- Symmetry methods have long been recognized to be of great importance for the study of the differential equations. This book provides a solid introduction to those applications of Lie groups to differential equations which have proved to be useful in practice. The computational methods are presented so that graduate students and researchers can readily learn to use them. Following an exposition of the applications, the book develops the underlying theory. Many of the topics are presented in a novel way, with an emphasis on explicit examples and computations. Further examples, as well as new theoretical developments, appear in the exercises at the end of each chapter
- Symmetry methods have long been recognized to be of great importance for the study of the differential equations. This book provides a solid introduction to those applications of Lie groups to differential equations which have proved to be useful in practice. The computational methods are presented so that graduate students and researchers can readily learn to use them. Following an exposition of the applications, the book develops the underlying theory. Many of the topics are presented in a novel way, with an emphasis on explicit examples and computations. Further examples, as well as new theoretical developments, appear in the exercises at the end of each chapter
- Language
- eng
- Extent
- xxvi, 497 pages
- Note
- Includes indexes
- Contents
-
- Introduction to Lie groups
- Symmetry groups of differential equations
- Group-invariant solutions
- Symmetry groups and conservation laws
- Generalized symmetries
- Finite-dimensional Hamiltonian systems
- Hamiltonian methods for evolution equations
- Isbn
- 9780387962504
- Label
- Applications of Lie groups to differential equations
- Title
- Applications of Lie groups to differential equations
- Statement of responsibility
- Peter J. Olver
- Subject
-
- Differential equations
- Differentialgleichung
- EDP
- EDP
- Equations différentielles
- Lie groups
- Lie, Groupes de
- Lie, groupes de
- Lie-Gruppe
- Lie-groepen
- groupe Lie
- groupe Lie
- groupe symétrique
- groupe symétrique
- loi conservation
- loi conservation
- système hamiltonien
- système hamiltonien
- Équations différentielles
- équation différentielle
- équation différentielle
- équation évolution
- équation évolution
- Differentiaalvergelijkingen
- Language
- eng
- Summary
-
- Symmetry methods have long been recognized to be of great importance for the study of the differential equations. This book provides a solid introduction to those applications of Lie groups to differential equations which have proved to be useful in practice. The computational methods are presented so that graduate students and researchers can readily learn to use them. Following an exposition of the applications, the book develops the underlying theory. Many of the topics are presented in a novel way, with an emphasis on explicit examples and computations. Further examples, as well as new theoretical developments, appear in the exercises at the end of each chapter
- Symmetry methods have long been recognized to be of great importance for the study of the differential equations. This book provides a solid introduction to those applications of Lie groups to differential equations which have proved to be useful in practice. The computational methods are presented so that graduate students and researchers can readily learn to use them. Following an exposition of the applications, the book develops the underlying theory. Many of the topics are presented in a novel way, with an emphasis on explicit examples and computations. Further examples, as well as new theoretical developments, appear in the exercises at the end of each chapter
- Cataloging source
- DLC
- http://library.link/vocab/creatorName
- Olver, Peter J
- Illustrations
- illustrations
- Index
- index present
- Literary form
- non fiction
- Nature of contents
- bibliography
- Series statement
- Graduate texts in mathematics
- Series volume
- 107
- http://library.link/vocab/subjectName
-
- Differential equations
- Lie groups
- loi conservation
- équation évolution
- système hamiltonien
- groupe symétrique
- équation différentielle
- EDP
- groupe Lie
- Équations différentielles
- Lie, Groupes de
- Equations différentielles
- Lie, groupes de
- Differentiaalvergelijkingen
- Lie-groepen
- Differentialgleichung
- Lie-Gruppe
- loi conservation
- équation évolution
- système hamiltonien
- groupe symétrique
- équation différentielle
- EDP
- groupe Lie
- Label
- Applications of Lie groups to differential equations, Peter J. Olver
- Note
- Includes indexes
- Bibliography note
- Bibliography: pages [457]-474
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Introduction to Lie groups -- Symmetry groups of differential equations -- Group-invariant solutions -- Symmetry groups and conservation laws -- Generalized symmetries -- Finite-dimensional Hamiltonian systems -- Hamiltonian methods for evolution equations
- Control code
- 12420814
- Dimensions
- 25 cm
- Extent
- xxvi, 497 pages
- Isbn
- 9780387962504
- Lccn
- 85017318
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- 10 illustrations
- System control number
- (WaOLN)882228
- Label
- Applications of Lie groups to differential equations, Peter J. Olver
- Note
- Includes indexes
- Bibliography note
- Bibliography: pages [457]-474
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Introduction to Lie groups -- Symmetry groups of differential equations -- Group-invariant solutions -- Symmetry groups and conservation laws -- Generalized symmetries -- Finite-dimensional Hamiltonian systems -- Hamiltonian methods for evolution equations
- Control code
- 12420814
- Dimensions
- 25 cm
- Extent
- xxvi, 497 pages
- Isbn
- 9780387962504
- Lccn
- 85017318
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- 10 illustrations
- System control number
- (WaOLN)882228
Subject
- Differential equations
- Differentialgleichung
- EDP
- EDP
- Equations différentielles
- Lie groups
- Lie, Groupes de
- Lie, groupes de
- Lie-Gruppe
- Lie-groepen
- groupe Lie
- groupe Lie
- groupe symétrique
- groupe symétrique
- loi conservation
- loi conservation
- système hamiltonien
- système hamiltonien
- Équations différentielles
- équation différentielle
- équation différentielle
- équation évolution
- équation évolution
- Differentiaalvergelijkingen
Member of
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Applications-of-Lie-groups-to-differential/z6vKNXWn2qQ/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Applications-of-Lie-groups-to-differential/z6vKNXWn2qQ/">Applications of Lie groups to differential equations, Peter J. Olver</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Applications of Lie groups to differential equations, Peter J. Olver
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Applications-of-Lie-groups-to-differential/z6vKNXWn2qQ/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Applications-of-Lie-groups-to-differential/z6vKNXWn2qQ/">Applications of Lie groups to differential equations, Peter J. Olver</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>