The Resource Asymptotic behavior of monodromy : singularly perturbed differential equations on a Riemann surface, Carlos Simpson
Asymptotic behavior of monodromy : singularly perturbed differential equations on a Riemann surface, Carlos Simpson
Resource Information
The item Asymptotic behavior of monodromy : singularly perturbed differential equations on a Riemann surface, Carlos Simpson represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Asymptotic behavior of monodromy : singularly perturbed differential equations on a Riemann surface, Carlos Simpson represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 1 library branch.
- Summary
- This book concerns the question of how the solution of a system of ODE's varies when the differential equation varies. The goal is to give nonzero asymptotic expansions for the solution in terms of a parameter expressing how some coefficients go to infinity. A particular classof families of equations is considered, where the answer exhibits a new kind of behavior not seen in most work known until now. The techniques include Laplace transform and the method of stationary phase, and a combinatorial technique for estimating the contributions of terms in an infinite series expansion for the solution. Addressed primarily to researchers inalgebraic geometry, ordinary differential equations and complex analysis, the book will also be of interest to applied mathematicians working on asymptotics of singular perturbations and numerical solution of ODE's
- Language
- eng
- Extent
- 1 online resource (139 pages).
- Contents
-
- Ordinary differential equations on a Riemann surface
- Laplace transform, asymptotic expansions, and the method of stationary phase
- Construction of flows
- Moving relative homology chains
- The main lemma
- Finiteness lemmas
- Sizes of cells
- Moving the cycle of integration
- Bounds on multiplicities
- Regularity of individual terms
- Complements and examples
- The Sturm-Liouville problem
- Isbn
- 9783540466413
- Label
- Asymptotic behavior of monodromy : singularly perturbed differential equations on a Riemann surface
- Title
- Asymptotic behavior of monodromy
- Title remainder
- singularly perturbed differential equations on a Riemann surface
- Statement of responsibility
- Carlos Simpson
- Subject
-
- Differential equations -- Asymptotic theory
- Differential equations -- Asymptotic theory
- Differential equations -- Asymptotic theory
- Kompakte Riemannsche Fläche
- Riemann surfaces
- Riemann surfaces
- Riemann surfaces
- Riemann, Surfaces de
- Singuläre Störung
- System von gewöhnlichen Differentialgleichungen
- Équations différentielles -- Théorie asymptotique
- Asymptotische Entwicklung
- Language
- eng
- Summary
- This book concerns the question of how the solution of a system of ODE's varies when the differential equation varies. The goal is to give nonzero asymptotic expansions for the solution in terms of a parameter expressing how some coefficients go to infinity. A particular classof families of equations is considered, where the answer exhibits a new kind of behavior not seen in most work known until now. The techniques include Laplace transform and the method of stationary phase, and a combinatorial technique for estimating the contributions of terms in an infinite series expansion for the solution. Addressed primarily to researchers inalgebraic geometry, ordinary differential equations and complex analysis, the book will also be of interest to applied mathematicians working on asymptotics of singular perturbations and numerical solution of ODE's
- Action
- digitized
- Cataloging source
- SPLNM
- http://library.link/vocab/creatorDate
- 1962-
- http://library.link/vocab/creatorName
- Simpson, Carlos
- Dewey number
-
- 510 s
- 515/.352
- Index
- index present
- LC call number
-
- QA3
- QA372
- LC item number
- .L28 no. 1502
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- http://library.link/vocab/relatedWorkOrContributorDate
- 1962-
- http://library.link/vocab/relatedWorkOrContributorName
- Simpson, Carlos
- Series statement
- Lecture notes in mathematics,
- Series volume
- 1502
- http://library.link/vocab/subjectName
-
- Differential equations
- Riemann surfaces
- Équations différentielles
- Riemann, Surfaces de
- Differential equations
- Riemann surfaces
- Singuläre Störung
- Kompakte Riemannsche Fläche
- System von gewöhnlichen Differentialgleichungen
- Asymptotische Entwicklung
- Label
- Asymptotic behavior of monodromy : singularly perturbed differential equations on a Riemann surface, Carlos Simpson
- Bibliography note
- Includes bibliographical references (pages 135-137) and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Ordinary differential equations on a Riemann surface -- Laplace transform, asymptotic expansions, and the method of stationary phase -- Construction of flows -- Moving relative homology chains -- The main lemma -- Finiteness lemmas -- Sizes of cells -- Moving the cycle of integration -- Bounds on multiplicities -- Regularity of individual terms -- Complements and examples -- The Sturm-Liouville problem
- Control code
- 277138032
- Dimensions
- unknown
- Extent
- 1 online resource (139 pages).
- Form of item
- online
- Isbn
- 9783540466413
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Reproduction note
- Electronic reproduction.
- Sound
- unknown sound
- Specific material designation
- remote
- System control number
- (OCoLC)277138032
- System details
- Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
- Label
- Asymptotic behavior of monodromy : singularly perturbed differential equations on a Riemann surface, Carlos Simpson
- Bibliography note
- Includes bibliographical references (pages 135-137) and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Ordinary differential equations on a Riemann surface -- Laplace transform, asymptotic expansions, and the method of stationary phase -- Construction of flows -- Moving relative homology chains -- The main lemma -- Finiteness lemmas -- Sizes of cells -- Moving the cycle of integration -- Bounds on multiplicities -- Regularity of individual terms -- Complements and examples -- The Sturm-Liouville problem
- Control code
- 277138032
- Dimensions
- unknown
- Extent
- 1 online resource (139 pages).
- Form of item
- online
- Isbn
- 9783540466413
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Reproduction note
- Electronic reproduction.
- Sound
- unknown sound
- Specific material designation
- remote
- System control number
- (OCoLC)277138032
- System details
- Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
Subject
- Differential equations -- Asymptotic theory
- Differential equations -- Asymptotic theory
- Differential equations -- Asymptotic theory
- Kompakte Riemannsche Fläche
- Riemann surfaces
- Riemann surfaces
- Riemann surfaces
- Riemann, Surfaces de
- Singuläre Störung
- System von gewöhnlichen Differentialgleichungen
- Équations différentielles -- Théorie asymptotique
- Asymptotische Entwicklung
Member of
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Asymptotic-behavior-of-monodromy--singularly/gppb9-Icuig/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Asymptotic-behavior-of-monodromy--singularly/gppb9-Icuig/">Asymptotic behavior of monodromy : singularly perturbed differential equations on a Riemann surface, Carlos Simpson</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Asymptotic behavior of monodromy : singularly perturbed differential equations on a Riemann surface, Carlos Simpson
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Asymptotic-behavior-of-monodromy--singularly/gppb9-Icuig/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Asymptotic-behavior-of-monodromy--singularly/gppb9-Icuig/">Asymptotic behavior of monodromy : singularly perturbed differential equations on a Riemann surface, Carlos Simpson</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>