The Resource Boundary value problems for the Stokes system in arbitrary Lipschitz domains, Marius Mitrea & Matthew Wright
Boundary value problems for the Stokes system in arbitrary Lipschitz domains, Marius Mitrea & Matthew Wright
Resource Information
The item Boundary value problems for the Stokes system in arbitrary Lipschitz domains, Marius Mitrea & Matthew Wright represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Boundary value problems for the Stokes system in arbitrary Lipschitz domains, Marius Mitrea & Matthew Wright represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 1 library branch.
- Summary
- The goal of this work is to treat the main boundary value problems for the Stokes system, i.e., (i) the Dirichlet problem with Lp-data and nontangential maximal function estimates, (ii) the Neumann problem with Lp-data and nontangential maximal function estimates, (iii) the Regularity problem with Lp1-data and nontangential maximal function estimates, (iv) the transmission problem with Lp-data and nontangential maximal function estimates, (v) the Poisson problem with Dirichlet condition in Besov-Triebel-Lizorkin spaces, (vi) the Poisson problem with Neumann condition in Besov-Triebel-Lizorkin spaces, in Lipschitz domains of arbitrary topology in Rn, for each n [greater than or equal to] 2. Our approach relies on boundary integral methods and yields constructive solutions to the aforementioned problems
- Language
-
- eng
- fre
- eng
- Extent
- viii, 241 pages
- Note
- Revision of Matthew Wright's 2008 Ph.D. dissertation where Marius Mitrea was dissertation supervisor
- Contents
-
- 1. Introduction
- 2. Smoothness spaces and Lipschitz domains
- 3. Rellich identities for divergence form, second-order systems
- 4. The Stokes system and hydrostatic potentials
- 5. The Lp[superscript] transmission problem with p near 2
- 6. Local L2 estimates
- 7. The transmission problem in two and three dimensions
- 8. Higher dimensions
- 9. Boundary value problems in bounded Lipschitz domains
- 10. The Poisson problem for the Stokes system
- 11. Appendix
- Isbn
- 9782856293430
- Label
- Boundary value problems for the Stokes system in arbitrary Lipschitz domains
- Title
- Boundary value problems for the Stokes system in arbitrary Lipschitz domains
- Statement of responsibility
- Marius Mitrea & Matthew Wright
- Language
-
- eng
- fre
- eng
- Summary
- The goal of this work is to treat the main boundary value problems for the Stokes system, i.e., (i) the Dirichlet problem with Lp-data and nontangential maximal function estimates, (ii) the Neumann problem with Lp-data and nontangential maximal function estimates, (iii) the Regularity problem with Lp1-data and nontangential maximal function estimates, (iv) the transmission problem with Lp-data and nontangential maximal function estimates, (v) the Poisson problem with Dirichlet condition in Besov-Triebel-Lizorkin spaces, (vi) the Poisson problem with Neumann condition in Besov-Triebel-Lizorkin spaces, in Lipschitz domains of arbitrary topology in Rn, for each n [greater than or equal to] 2. Our approach relies on boundary integral methods and yields constructive solutions to the aforementioned problems
- Cataloging source
- BTCTA
- http://library.link/vocab/creatorName
- Mitrea, Marius
- Illustrations
- illustrations
- Index
- no index present
- Language note
- Abstract also in French
- LC call number
-
- QA379
- QA1
- LC item number
-
- .M58 2012
- .A82 no.344
- Literary form
- non fiction
- Nature of contents
- bibliography
- http://library.link/vocab/relatedWorkOrContributorName
-
- Wright, Matthew (Matthew Ephraim)
- Société mathématique de France
- Series statement
- Astérisque,
- Series volume
- 344
- http://library.link/vocab/subjectName
-
- Boundary value problems
- Differential equations, Elliptic
- Label
- Boundary value problems for the Stokes system in arbitrary Lipschitz domains, Marius Mitrea & Matthew Wright
- Note
- Revision of Matthew Wright's 2008 Ph.D. dissertation where Marius Mitrea was dissertation supervisor
- Bibliography note
- Includes bibliographical references
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- 1. Introduction -- 2. Smoothness spaces and Lipschitz domains -- 3. Rellich identities for divergence form, second-order systems -- 4. The Stokes system and hydrostatic potentials -- 5. The Lp[superscript] transmission problem with p near 2 -- 6. Local L2 estimates -- 7. The transmission problem in two and three dimensions -- 8. Higher dimensions -- 9. Boundary value problems in bounded Lipschitz domains -- 10. The Poisson problem for the Stokes system -- 11. Appendix
- Control code
- 813048595
- Dimensions
- 24 cm
- Extent
- viii, 241 pages
- Isbn
- 9782856293430
- Isbn Type
- (pbk.)
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- illustrations
- System control number
- (OCoLC)813048595
- Label
- Boundary value problems for the Stokes system in arbitrary Lipschitz domains, Marius Mitrea & Matthew Wright
- Note
- Revision of Matthew Wright's 2008 Ph.D. dissertation where Marius Mitrea was dissertation supervisor
- Bibliography note
- Includes bibliographical references
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- 1. Introduction -- 2. Smoothness spaces and Lipschitz domains -- 3. Rellich identities for divergence form, second-order systems -- 4. The Stokes system and hydrostatic potentials -- 5. The Lp[superscript] transmission problem with p near 2 -- 6. Local L2 estimates -- 7. The transmission problem in two and three dimensions -- 8. Higher dimensions -- 9. Boundary value problems in bounded Lipschitz domains -- 10. The Poisson problem for the Stokes system -- 11. Appendix
- Control code
- 813048595
- Dimensions
- 24 cm
- Extent
- viii, 241 pages
- Isbn
- 9782856293430
- Isbn Type
- (pbk.)
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- illustrations
- System control number
- (OCoLC)813048595
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Boundary-value-problems-for-the-Stokes-system-in/D2ILuLuM2Ns/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Boundary-value-problems-for-the-Stokes-system-in/D2ILuLuM2Ns/">Boundary value problems for the Stokes system in arbitrary Lipschitz domains, Marius Mitrea & Matthew Wright</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Boundary value problems for the Stokes system in arbitrary Lipschitz domains, Marius Mitrea & Matthew Wright
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Boundary-value-problems-for-the-Stokes-system-in/D2ILuLuM2Ns/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Boundary-value-problems-for-the-Stokes-system-in/D2ILuLuM2Ns/">Boundary value problems for the Stokes system in arbitrary Lipschitz domains, Marius Mitrea & Matthew Wright</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>