Coverart for item
The Resource Calderon-Zygmund capacities and operators on nonhomogeneous spaces, Alexander Volberg

Calderon-Zygmund capacities and operators on nonhomogeneous spaces, Alexander Volberg

Label
Calderon-Zygmund capacities and operators on nonhomogeneous spaces
Title
Calderon-Zygmund capacities and operators on nonhomogeneous spaces
Statement of responsibility
Alexander Volberg
Creator
Subject
Language
eng
Member of
Cataloging source
DLC
http://library.link/vocab/creatorDate
1956-
http://library.link/vocab/creatorName
Volberg, Alexander
Dewey number
  • 510 s
  • 515/.7246
Illustrations
illustrations
Index
no index present
LC call number
  • QA1
  • QA329.2
LC item number
.R33 329 no. 100
Literary form
non fiction
Nature of contents
bibliography
Series statement
CBMS regional conference series in mathematics,
Series volume
no. 100
http://library.link/vocab/subjectName
  • Calderón-Zygmund operator
  • Calderón-Zygmund, Opérateur de
  • Operatortheorie
  • Holomorfia (análise)
  • Calderón-Zygmund-Operator
Label
Calderon-Zygmund capacities and operators on nonhomogeneous spaces, Alexander Volberg
Instantiates
Publication
Bibliography note
Includes bibliographical references (pages 165-167)
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • 11
  • 101
  • 13.1.
  • Good functions and bad functions again
  • 101
  • 13.2.
  • Reduction to estimates on good functions
  • 102
  • 13.3.
  • Splitting [left angle bracket]T[open phi subscript good], [psi subscript good right angle bracket] to three sums
  • 103
  • 3.2.
  • 13.4.
  • Three types of estimates of [function of] k(x, y)f(x)g(y)d[mu](x)d[mu](y)
  • 104
  • 13.5.
  • Estimate of long range interaction sum [sigma subscript 2]
  • 106
  • 13.6.
  • Short range interaction sum [sigma subscript 3]. Nonhomogeneous paraproducts
  • 109
  • Chapter 14.
  • A building block for the construction of special measures
  • Estimate of the Diagonal Sum. Remainder in Theorem 3.3
  • 121
  • 14.1.
  • Estimate of [Sigma subscript term]
  • 123
  • 14.2.
  • Estimate of [Sigma subscript tr]
  • 126
  • Chapter 15.
  • Two Weight Estimate for the Hilbert Transform. Preliminaries
  • 13
  • 127
  • Chapter 16.
  • Necessity in the Main Theorem
  • 133
  • Chapter 17.
  • Two Weight Hilbert Transform. Towards the Main Theorem
  • 135
  • 17.1.
  • Bad and good parts of f and g
  • 136
  • 3.3.
  • 17.2.
  • Estimates on good functions
  • 137
  • Chapter 18.
  • Long Range Interaction
  • 139
  • Chapter 19.
  • The Rest of the Long Range Interaction
  • 143
  • Chapter 20.
  • Localization on special cubes
  • The Short Range Interaction
  • 145
  • 20.1.
  • The estimate of neighbor-terms
  • 145
  • 20.2.
  • The estimate of stopping terms
  • 145
  • 20.3.
  • The choice of stopping intervals
  • 13
  • 147
  • Chapter 21.
  • Difficult Terms and Several Paraproducts
  • 153
  • 21.1.
  • First paraproduct
  • 154
  • 21.2.
  • Two more paraproducts
  • 156
  • 3.4.
  • 21.3.
  • Second paraproduct: miraculous improvement of the Carleson property
  • 159
  • Chapter 22.
  • Two-Weight Hilbert Transform and Maximal Operator
  • 161
  • 22.1.
  • Doubling
  • 161
  • 22.2.
  • Modification of distribution S. Construction of auxiliary measures
  • No doubling
  • 163
  • 14
  • Chapter 2.
  • 3.5.
  • Ahlfors balls
  • 15
  • 3.6.
  • The principal estimate for auxiliary measures
  • 16
  • Chapter 4.
  • From Distribution to Measure. Carleson Property
  • 21
  • Chapter 5.
  • Preliminaries on Capacities
  • Potential Neighborhood that has Properties (3.13)-(3.14)
  • 25
  • 5.1.
  • Capacities with Calderon-Zygmund (CZ) kernels
  • 26
  • 5.2.
  • Variational capacity and extremal measures
  • 33
  • 5.3.
  • L[superscript p] theory of nonhomogeneous CZ operators. Measure of order m
  • 7
  • 42
  • 5.4.
  • Riesz and Cauchy kernels: [gamma]+ [characters not reproducible] [gamma subscript op]
  • 45
  • 5.5.
  • Cauchy kernel and analytic capacity
  • 47
  • Chapter 6.
  • The Tree of the Proof
  • 51
  • Chapter 3.
  • Chapter 7.
  • The First Reduction to Nonhomogeneous Tb Theorem
  • 55
  • Chapter 8.
  • The Second Reduction
  • 61
  • 8.1.
  • Suppressed kernels
  • 61
  • 8.2.
  • Localization of Newton and Riesz Potentials
  • From real-valued kernel to vector valued kernel
  • 67
  • 8.3.
  • From one lattice to two lattices
  • 68
  • 8.4.
  • Core suppression
  • 69
  • Chapter 9.
  • The Third Reduction
  • 11
  • 71
  • Chapter 10.
  • The Fourth Reduction
  • 73
  • 10.1.
  • [mu], b, D, [eta] decomposition
  • 73
  • 10.2.
  • Good functions and bad functions
  • 74
  • 3.1.
  • 10.3.
  • Estimates of nonhomogeneous Calderon-Zygmund operators on good functions
  • 76
  • 10.4.
  • The reduction of Theorem 9.1 to estimates of nonhomogeneous Calderon-Zygmund operator, namely to Theorem 10.6
  • 78
  • Chapter 11.
  • The Proof of Nonhomogeneous Cotlar's Lemma. Arbitrary Measure
  • 83
  • Chapter 12.
  • Localization lemmas
  • Starting the Proof of Nonhomogeneous Nonaccretive Tb Theorem
  • 93
  • 12.1.
  • Terminal and transit cubes
  • 94
  • 12.2.
  • Projections [Lambda] and [Delta subscript Q]
  • 96
  • Chapter 13.
  • Next Step in Theorem 10.6. Good and Bad Functions
Control code
53276503
Dimensions
26 cm
Extent
iv, 167 pages
Isbn
9780821832523
Isbn Type
(alk. paper)
Lccn
2003062990
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other physical details
illustrations
Label
Calderon-Zygmund capacities and operators on nonhomogeneous spaces, Alexander Volberg
Publication
Bibliography note
Includes bibliographical references (pages 165-167)
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • 11
  • 101
  • 13.1.
  • Good functions and bad functions again
  • 101
  • 13.2.
  • Reduction to estimates on good functions
  • 102
  • 13.3.
  • Splitting [left angle bracket]T[open phi subscript good], [psi subscript good right angle bracket] to three sums
  • 103
  • 3.2.
  • 13.4.
  • Three types of estimates of [function of] k(x, y)f(x)g(y)d[mu](x)d[mu](y)
  • 104
  • 13.5.
  • Estimate of long range interaction sum [sigma subscript 2]
  • 106
  • 13.6.
  • Short range interaction sum [sigma subscript 3]. Nonhomogeneous paraproducts
  • 109
  • Chapter 14.
  • A building block for the construction of special measures
  • Estimate of the Diagonal Sum. Remainder in Theorem 3.3
  • 121
  • 14.1.
  • Estimate of [Sigma subscript term]
  • 123
  • 14.2.
  • Estimate of [Sigma subscript tr]
  • 126
  • Chapter 15.
  • Two Weight Estimate for the Hilbert Transform. Preliminaries
  • 13
  • 127
  • Chapter 16.
  • Necessity in the Main Theorem
  • 133
  • Chapter 17.
  • Two Weight Hilbert Transform. Towards the Main Theorem
  • 135
  • 17.1.
  • Bad and good parts of f and g
  • 136
  • 3.3.
  • 17.2.
  • Estimates on good functions
  • 137
  • Chapter 18.
  • Long Range Interaction
  • 139
  • Chapter 19.
  • The Rest of the Long Range Interaction
  • 143
  • Chapter 20.
  • Localization on special cubes
  • The Short Range Interaction
  • 145
  • 20.1.
  • The estimate of neighbor-terms
  • 145
  • 20.2.
  • The estimate of stopping terms
  • 145
  • 20.3.
  • The choice of stopping intervals
  • 13
  • 147
  • Chapter 21.
  • Difficult Terms and Several Paraproducts
  • 153
  • 21.1.
  • First paraproduct
  • 154
  • 21.2.
  • Two more paraproducts
  • 156
  • 3.4.
  • 21.3.
  • Second paraproduct: miraculous improvement of the Carleson property
  • 159
  • Chapter 22.
  • Two-Weight Hilbert Transform and Maximal Operator
  • 161
  • 22.1.
  • Doubling
  • 161
  • 22.2.
  • Modification of distribution S. Construction of auxiliary measures
  • No doubling
  • 163
  • 14
  • Chapter 2.
  • 3.5.
  • Ahlfors balls
  • 15
  • 3.6.
  • The principal estimate for auxiliary measures
  • 16
  • Chapter 4.
  • From Distribution to Measure. Carleson Property
  • 21
  • Chapter 5.
  • Preliminaries on Capacities
  • Potential Neighborhood that has Properties (3.13)-(3.14)
  • 25
  • 5.1.
  • Capacities with Calderon-Zygmund (CZ) kernels
  • 26
  • 5.2.
  • Variational capacity and extremal measures
  • 33
  • 5.3.
  • L[superscript p] theory of nonhomogeneous CZ operators. Measure of order m
  • 7
  • 42
  • 5.4.
  • Riesz and Cauchy kernels: [gamma]+ [characters not reproducible] [gamma subscript op]
  • 45
  • 5.5.
  • Cauchy kernel and analytic capacity
  • 47
  • Chapter 6.
  • The Tree of the Proof
  • 51
  • Chapter 3.
  • Chapter 7.
  • The First Reduction to Nonhomogeneous Tb Theorem
  • 55
  • Chapter 8.
  • The Second Reduction
  • 61
  • 8.1.
  • Suppressed kernels
  • 61
  • 8.2.
  • Localization of Newton and Riesz Potentials
  • From real-valued kernel to vector valued kernel
  • 67
  • 8.3.
  • From one lattice to two lattices
  • 68
  • 8.4.
  • Core suppression
  • 69
  • Chapter 9.
  • The Third Reduction
  • 11
  • 71
  • Chapter 10.
  • The Fourth Reduction
  • 73
  • 10.1.
  • [mu], b, D, [eta] decomposition
  • 73
  • 10.2.
  • Good functions and bad functions
  • 74
  • 3.1.
  • 10.3.
  • Estimates of nonhomogeneous Calderon-Zygmund operators on good functions
  • 76
  • 10.4.
  • The reduction of Theorem 9.1 to estimates of nonhomogeneous Calderon-Zygmund operator, namely to Theorem 10.6
  • 78
  • Chapter 11.
  • The Proof of Nonhomogeneous Cotlar's Lemma. Arbitrary Measure
  • 83
  • Chapter 12.
  • Localization lemmas
  • Starting the Proof of Nonhomogeneous Nonaccretive Tb Theorem
  • 93
  • 12.1.
  • Terminal and transit cubes
  • 94
  • 12.2.
  • Projections [Lambda] and [Delta subscript Q]
  • 96
  • Chapter 13.
  • Next Step in Theorem 10.6. Good and Bad Functions
Control code
53276503
Dimensions
26 cm
Extent
iv, 167 pages
Isbn
9780821832523
Isbn Type
(alk. paper)
Lccn
2003062990
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other physical details
illustrations

Library Locations

    • Mathematical Sciences LibraryBorrow it
      104 Ellis Library, Columbia, MO, 65201, US
      38.944377 -92.326537
Processing Feedback ...