The Resource Cellular mechanotransduction : diverse perspectives from molecules to tissues, edited by Mohammad R.K. Mofrad, Roger D. Kamm
Cellular mechanotransduction : diverse perspectives from molecules to tissues, edited by Mohammad R.K. Mofrad, Roger D. Kamm
Resource Information
The item Cellular mechanotransduction : diverse perspectives from molecules to tissues, edited by Mohammad R.K. Mofrad, Roger D. Kamm represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Cellular mechanotransduction : diverse perspectives from molecules to tissues, edited by Mohammad R.K. Mofrad, Roger D. Kamm represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 1 library branch.
- Summary
- ""Mechanotransduction" is the term for the ability, first described by 19th-century anatomist Julius Wolff, of living tissues to sense mechanical stress and respond by tissue remodeling. More recently, the scope of mechanotransduction has been expanded to include the sensation of stress, its translation into a biochemical signal, and the sequence of biological responses it produces. This book looks at mechanotransduction in a more restricted sense, focusing on the process of stress sensing and transducing a mechanical force into a cascade of biochemical signals. This stress has become increasingly recognized as one of the primary and essential factors controlling biological functions, ultimately affecting the function of the cells, tissues, and organs. A primary goal of this broad book is also to help define the new field of mechanomics, which attempts to describe the complete mechanical state of a biological system."--BOOK JACKET
- Language
- eng
- Extent
- xii, 465 pages, 16 unnumbered pages of plates
- Contents
-
- 1. Introduction Roger D. Kamm and Mohammad R. K. Mofrad; 2. Endothelial mechanotransduction Peter F. Davies and Brian P. Helmke; 3. Role of the plasma membrane in endothelial cell mechanosensation of shear stress Peter J. Butler and Shu Chien; 4. Mechanotransduction by membrane-mediated activation of G-protein coupled receptors and G-proteins Yan-Liang Zhang, John A. Frangos, and Mirianas Chachisvilis; 5. Cellular mechanotransduction: interactions with the extracellular matrix Andrew D. Doyle and Kenneth M. Yamada; 6. Role of ion channels in cellular mechanotransduction: lessons from the vascular endothelium Abdul I. Barakat and Andrea Gojova; 7. Towards a modular analysis of cell mechanosensing and mechanotransduction: a manual for cell mechanics Benjamin J. Dubin-Thaler and Michael P. Sheetz; 8. Tensegrity as a mechanism for integrating molecular and cellular mechanotransduction mechanisms Donald E. Ingber; 9. Nuclear mechanics and mechanotransduction Shinji Deguchi and Masaaki Sato; 10. Microtubule bending and breaking in cellular mechanotransduction Andrew D. Bicek, Dominique Seetapun, and David J. Odde; 11. A molecular perspective on mechanotransduction in focal adhesions Seung E. Lee, Roger D. Kamm, and Mohammad R. K. Mofrad; 12. Protein conformational change: a molecular basis of mechanotransduction Gang Bao; 13. Translating mechanical force into discrete biochemical signal changes: multimodularity imposes unique properties to mechanotransductive proteins Vesa P. Hytonen, Michael L. Smith, and Viola Vogel; 14. Mechanotransduction through local autocrine signaling Nikola Kojic and Daniel J. Tschumperlin; 15. The interaction between fluid-wall shear stress and solid circumferential strain affects endothelial cell mechanobiology John M. Tarbell; 16. Micro- and nanoscale force techniques for mechanotransduction Nathan J. Sniadecki, Wesley R. Legant, and Christopher S. Chen; 17. Mechanical regulation of stem cells: implications in tissue remodeling Kyle Kurpinski, Randall R. R. Janairo, Shu Chien, and Song Li; 18. Mechanotransduction : role of nuclear pore mechanics and nucleocytoplasmic transport Christopher B. Wolf and Mohammad R.K. Mofrad 19. Summary and outlook Mohammad R. K. Mofrad and Roger D. Kamm
- Isbn
- 9780521895231
- Label
- Cellular mechanotransduction : diverse perspectives from molecules to tissues
- Title
- Cellular mechanotransduction
- Title remainder
- diverse perspectives from molecules to tissues
- Statement of responsibility
- edited by Mohammad R.K. Mofrad, Roger D. Kamm
- Language
- eng
- Summary
- ""Mechanotransduction" is the term for the ability, first described by 19th-century anatomist Julius Wolff, of living tissues to sense mechanical stress and respond by tissue remodeling. More recently, the scope of mechanotransduction has been expanded to include the sensation of stress, its translation into a biochemical signal, and the sequence of biological responses it produces. This book looks at mechanotransduction in a more restricted sense, focusing on the process of stress sensing and transducing a mechanical force into a cascade of biochemical signals. This stress has become increasingly recognized as one of the primary and essential factors controlling biological functions, ultimately affecting the function of the cells, tissues, and organs. A primary goal of this broad book is also to help define the new field of mechanomics, which attempts to describe the complete mechanical state of a biological system."--BOOK JACKET
- Cataloging source
- DLC
- http://library.link/vocab/creatorName
- Mofrad, Mohammad R. K
- Dewey number
- 571.6
- Illustrations
-
- illustrations
- plates
- Index
- index present
- LC call number
- QH645.5
- LC item number
- .M64 2010
- Literary form
- non fiction
- Nature of contents
- bibliography
- NLM call number
-
- 2010 A-178
- QU 375
- NLM item number
- M695c 2010
- http://library.link/vocab/relatedWorkOrContributorName
- Kamm, Roger D
- http://library.link/vocab/subjectName
-
- Cells
- Mechanotransduction, Cellular
- Biomechanical Phenomena
- Cell Physiological Phenomena
- Label
- Cellular mechanotransduction : diverse perspectives from molecules to tissues, edited by Mohammad R.K. Mofrad, Roger D. Kamm
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- 1. Introduction Roger D. Kamm and Mohammad R. K. Mofrad; 2. Endothelial mechanotransduction Peter F. Davies and Brian P. Helmke; 3. Role of the plasma membrane in endothelial cell mechanosensation of shear stress Peter J. Butler and Shu Chien; 4. Mechanotransduction by membrane-mediated activation of G-protein coupled receptors and G-proteins Yan-Liang Zhang, John A. Frangos, and Mirianas Chachisvilis; 5. Cellular mechanotransduction: interactions with the extracellular matrix Andrew D. Doyle and Kenneth M. Yamada; 6. Role of ion channels in cellular mechanotransduction: lessons from the vascular endothelium Abdul I. Barakat and Andrea Gojova; 7. Towards a modular analysis of cell mechanosensing and mechanotransduction: a manual for cell mechanics Benjamin J. Dubin-Thaler and Michael P. Sheetz; 8. Tensegrity as a mechanism for integrating molecular and cellular mechanotransduction mechanisms Donald E. Ingber; 9. Nuclear mechanics and mechanotransduction Shinji Deguchi and Masaaki Sato; 10. Microtubule bending and breaking in cellular mechanotransduction Andrew D. Bicek, Dominique Seetapun, and David J. Odde; 11. A molecular perspective on mechanotransduction in focal adhesions Seung E. Lee, Roger D. Kamm, and Mohammad R. K. Mofrad; 12. Protein conformational change: a molecular basis of mechanotransduction Gang Bao; 13. Translating mechanical force into discrete biochemical signal changes: multimodularity imposes unique properties to mechanotransductive proteins Vesa P. Hytonen, Michael L. Smith, and Viola Vogel; 14. Mechanotransduction through local autocrine signaling Nikola Kojic and Daniel J. Tschumperlin; 15. The interaction between fluid-wall shear stress and solid circumferential strain affects endothelial cell mechanobiology John M. Tarbell; 16. Micro- and nanoscale force techniques for mechanotransduction Nathan J. Sniadecki, Wesley R. Legant, and Christopher S. Chen; 17. Mechanical regulation of stem cells: implications in tissue remodeling Kyle Kurpinski, Randall R. R. Janairo, Shu Chien, and Song Li; 18. Mechanotransduction : role of nuclear pore mechanics and nucleocytoplasmic transport Christopher B. Wolf and Mohammad R.K. Mofrad 19. Summary and outlook Mohammad R. K. Mofrad and Roger D. Kamm
- Control code
- 268793825
- Dimensions
- 26 cm
- Extent
- xii, 465 pages, 16 unnumbered pages of plates
- Isbn
- 9780521895231
- Lccn
- 2008049985
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- illustrations (some color)
- System control number
- (OCoLC)268793825
- Label
- Cellular mechanotransduction : diverse perspectives from molecules to tissues, edited by Mohammad R.K. Mofrad, Roger D. Kamm
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- 1. Introduction Roger D. Kamm and Mohammad R. K. Mofrad; 2. Endothelial mechanotransduction Peter F. Davies and Brian P. Helmke; 3. Role of the plasma membrane in endothelial cell mechanosensation of shear stress Peter J. Butler and Shu Chien; 4. Mechanotransduction by membrane-mediated activation of G-protein coupled receptors and G-proteins Yan-Liang Zhang, John A. Frangos, and Mirianas Chachisvilis; 5. Cellular mechanotransduction: interactions with the extracellular matrix Andrew D. Doyle and Kenneth M. Yamada; 6. Role of ion channels in cellular mechanotransduction: lessons from the vascular endothelium Abdul I. Barakat and Andrea Gojova; 7. Towards a modular analysis of cell mechanosensing and mechanotransduction: a manual for cell mechanics Benjamin J. Dubin-Thaler and Michael P. Sheetz; 8. Tensegrity as a mechanism for integrating molecular and cellular mechanotransduction mechanisms Donald E. Ingber; 9. Nuclear mechanics and mechanotransduction Shinji Deguchi and Masaaki Sato; 10. Microtubule bending and breaking in cellular mechanotransduction Andrew D. Bicek, Dominique Seetapun, and David J. Odde; 11. A molecular perspective on mechanotransduction in focal adhesions Seung E. Lee, Roger D. Kamm, and Mohammad R. K. Mofrad; 12. Protein conformational change: a molecular basis of mechanotransduction Gang Bao; 13. Translating mechanical force into discrete biochemical signal changes: multimodularity imposes unique properties to mechanotransductive proteins Vesa P. Hytonen, Michael L. Smith, and Viola Vogel; 14. Mechanotransduction through local autocrine signaling Nikola Kojic and Daniel J. Tschumperlin; 15. The interaction between fluid-wall shear stress and solid circumferential strain affects endothelial cell mechanobiology John M. Tarbell; 16. Micro- and nanoscale force techniques for mechanotransduction Nathan J. Sniadecki, Wesley R. Legant, and Christopher S. Chen; 17. Mechanical regulation of stem cells: implications in tissue remodeling Kyle Kurpinski, Randall R. R. Janairo, Shu Chien, and Song Li; 18. Mechanotransduction : role of nuclear pore mechanics and nucleocytoplasmic transport Christopher B. Wolf and Mohammad R.K. Mofrad 19. Summary and outlook Mohammad R. K. Mofrad and Roger D. Kamm
- Control code
- 268793825
- Dimensions
- 26 cm
- Extent
- xii, 465 pages, 16 unnumbered pages of plates
- Isbn
- 9780521895231
- Lccn
- 2008049985
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- illustrations (some color)
- System control number
- (OCoLC)268793825
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Cellular-mechanotransduction--diverse/d7lFxuWva20/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Cellular-mechanotransduction--diverse/d7lFxuWva20/">Cellular mechanotransduction : diverse perspectives from molecules to tissues, edited by Mohammad R.K. Mofrad, Roger D. Kamm</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Cellular mechanotransduction : diverse perspectives from molecules to tissues, edited by Mohammad R.K. Mofrad, Roger D. Kamm
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Cellular-mechanotransduction--diverse/d7lFxuWva20/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Cellular-mechanotransduction--diverse/d7lFxuWva20/">Cellular mechanotransduction : diverse perspectives from molecules to tissues, edited by Mohammad R.K. Mofrad, Roger D. Kamm</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>