Coverart for item
The Resource Chemotaxis, Michael Eisenbach ; with contributions from Joseph W. Lengeler [and others]

Chemotaxis, Michael Eisenbach ; with contributions from Joseph W. Lengeler [and others]

Label
Chemotaxis
Title
Chemotaxis
Statement of responsibility
Michael Eisenbach ; with contributions from Joseph W. Lengeler [and others]
Creator
Contributor
Subject
Language
eng
Cataloging source
UAT
http://library.link/vocab/creatorName
Eisenbach, Michael
Illustrations
illustrations
Index
no index present
LC call number
QR187.4
LC item number
.E39 2004
Literary form
non fiction
http://library.link/vocab/relatedWorkOrContributorName
Lengeler, Joseph W
http://library.link/vocab/subjectName
  • Chemotaxis
  • Chemotaxis
  • Signal Transduction
  • Chimiotaxie
Label
Chemotaxis, Michael Eisenbach ; with contributions from Joseph W. Lengeler [and others]
Instantiates
Publication
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • 10
  • 90
  • 3.2.
  • Population migration in a preformed liquid gradient
  • 95
  • 3.3.
  • Ring forming assay on semisolid agar
  • 95
  • 3.4.
  • Tracking free-swimming bacteria (behavioral assays)
  • 97
  • 2.2.
  • 3.5.
  • Flagellar rotation
  • 98
  • 4.
  • Chemotactic Stimuli for Bacteria
  • 101
  • 4.1.
  • Types of stimuli
  • 101
  • 4.2.
  • Swarming movements
  • General characteristics of stimuli
  • 103
  • 4.3.
  • Diversity of stimuli in different species
  • 104
  • 4.4.
  • Are the stimuli themselves detected or their metabolic products?
  • 105
  • 5.
  • Chemotaxis-Related Genes
  • 11
  • 109
  • 6.
  • Chemotaxis Receptors
  • 113
  • 6.1.
  • Chemotaxis-specific receptors
  • 113
  • 6.2.
  • Dual-function receptors
  • 123
  • 2.3.
  • 6.3.
  • Chemorepellent receptors
  • 125
  • 7.
  • Other Chemotaxis Proteins
  • 127
  • 7.1.
  • CheA
  • 127
  • 7.2.
  • Gliding and twitching movements
  • CheB
  • 130
  • 7.3.
  • CheR
  • 132
  • 7.4.
  • CheW
  • 132
  • 7.5.
  • CheY
  • 12
  • 134
  • 7.6.
  • CheZ
  • 143
  • 8.
  • Signal Transduction During Chemotaxis
  • 147
  • 8.1.
  • History
  • 147
  • 2.4.
  • 8.2.
  • Mechanism of excitation
  • 147
  • 8.3.
  • Mechanism of adaptation
  • 159
  • 8.4.
  • A nonconventional signal transduction pathway in E. coli
  • 163
  • 8.5.
  • Crawling and amoeboid movements
  • Variations in signal transduction pathways in other bacterial species
  • 164
  • 4.
  • Chemotaxis as a Means of Cell-Cell Communication in Bacteria
  • 216
  • 2.
  • Pattern Formation by E. coli and Salmonella
  • 217
  • 2.1.
  • Pattern formation in minimal medium and the role of the Tar receptor
  • 13
  • 217
  • 2.2.
  • Pattern formation by Salmonella in complex medium
  • 220
  • 2.3.
  • A potential biological role for pattern formation in E. coli and Salmonella
  • 220
  • 3.
  • Chemotaxis Systems in Bacterial Swarming
  • 221
  • 2.
  • 2.5.
  • 3.1.
  • Swarming motility
  • 221
  • 3.2.
  • Intercellular signaling and swarming
  • 222
  • 4.
  • Pattern Formation in Paenibacilli
  • 224
  • 4.1.
  • Problems related to nomenclature
  • Paenibacillus dendritiformis morphotypes
  • 224
  • 4.2.
  • Pattern formation by P. vortex
  • 226
  • 4.3.
  • Morphotype "nebula"
  • 226
  • 4.4.
  • Mutants of P. dendritiformis defective in pattern formation: phenotypes and reconstitution
  • 14
  • 227
  • 4.5.
  • Pattern formation by other bacteria
  • 230
  • 5.
  • Chemotaxis in the Life Cycle of the Myxobacteria
  • 230
  • 5.1.
  • Introduction to the myxobacteria
  • 230
  • 3.
  • 5.2.
  • Direct evidence for chemotaxis
  • 234
  • 5.3.
  • Sensory transduction systems
  • 237
  • 5.4.
  • The role of intercellular signaling in development
  • 241
  • 5.
  • The Physiological Role of Chemotaxis: Sensory Aspects
  • Molecular Mechanisms of Chemotaxis in Amoebae
  • 253
  • 1.1.
  • Functions of amoeboid chemotaxis
  • 254
  • 2.
  • Amoeboid Motility
  • 256
  • 2.1.
  • The motility cycle
  • 15
  • 257
  • 2.2.
  • The cytoskeleton
  • 262
  • 2.3.
  • Adhesion
  • 267
  • 2.4.
  • The gradient sensed by amoebae: temporal vs. spatial sensing
  • 270
  • 3.1.
  • 2.5.
  • Excitation and adaptation
  • 272
  • 3.
  • Techniques to Measure Motility and Chemotaxis
  • 273
  • 3.1.
  • Assays in which a gradient of the stimulant is established by diffusion
  • 274
  • 3.2.
  • Chemotaxis among the prokaryotes
  • Assays utilizing global temporal increases (upshift)
  • 276
  • 3.3.
  • Tracking amoebae in situ
  • 277
  • 4.
  • Signal Transduction During Chemotaxis
  • 278
  • 4.1.
  • Dictyostelium
  • 16
  • 278
  • 4.2.
  • Mesenchymal cells
  • 287
  • 6.
  • Physiology and Molecular Mechanisms of Chemotaxis of White Blood Cells
  • 308
  • 2.
  • Neutrophil Chemoattractants
  • 309
  • 3.2.
  • 3.
  • The Transition from Circulating to Migrating Cells
  • 310
  • 4.
  • Neutrophil Migration
  • 315
  • 4.2.
  • Assays of neutrophil motility
  • 317
  • 5.
  • Chemotaxis -- A Basic and Universal Phenomenon Among Microorganisms and Eukaryotic Cells
  • Chemotaxis among eukaryotic organisms
  • Cell Polarization
  • 328
  • 5.1.
  • Morphological and behavioral aspects of polarization
  • 329
  • 5.2.
  • Molecular aspects of polarization
  • 331
  • 5.3.
  • Development of polarity
  • 22
  • 332
  • 6.
  • Two-Dimensional Versus Three-Dimensional Migration
  • 334
  • 6.1.
  • Migration on a two-dimensional surface
  • 334
  • 6.2.
  • Migration in a three-dimensional matrix
  • 335
  • 4.
  • 7.
  • Force Generation During Migration
  • 336
  • 7.1.
  • Lamellipodium extension
  • 336
  • 7.2.
  • Traction
  • 338
  • 7.3.
  • The Role of Chemotaxis in Fertilization and Reproduction
  • Rear retraction
  • 338
  • 8.
  • Migratory Responses to Multiple Stimuli
  • 339
  • 8.1.
  • Contact guidance
  • 339
  • 8.2.
  • Multiple chemoattractants
  • 28
  • 339
  • 9.
  • Signal Transduction
  • 340
  • 9.1.
  • Ligand-receptor binding and processing
  • 341
  • 9.2.
  • Heterotrimeric G-proteins
  • 347
  • 4.1.
  • 9.3.
  • G-protein effectors in neutrophils
  • 351
  • 9.4.
  • Regulation of G-protein-effector coupling
  • 377
  • 9.5.
  • Integration of the signaling pathways
  • 378
  • 7.
  • The role of chemotaxis in fertilization
  • Sperm Chemotaxis
  • 409
  • 2.
  • Sperm Motility
  • 409
  • 2.1.
  • The flagellum
  • 410
  • 2.2.
  • Flagellar function
  • 29
  • 412
  • 2.3.
  • Techniques for measuring sperm motility
  • 412
  • 2.4.
  • Types of sperm motility in different species
  • 414
  • 2.5.
  • Types of sperm motility within the female genital tract
  • 415
  • 4.2.
  • 3.
  • Criteria and Assays for Sperm Chemotaxis
  • 418
  • 3.1.
  • Accumulation assays
  • 419
  • 3.2.
  • Directionality assays
  • 422
  • 4.
  • The role of gamones in the brown algae and in fungi
  • Chemotaxis of Nonmammalian Spermatozoa
  • 424
  • 5.
  • Chemotaxis of Mammalian Spermatozoa
  • 427
  • 5.1.
  • Early observations interpreted as sperm chemotaxis
  • 428
  • 5.2.
  • Recent studies of sperm chemotaxis in mammals
  • 7
  • 30
  • 429
  • 5.3.
  • Mammalian sperm chemoattractants
  • 431
  • 5.4.
  • Physiological significance of mammalian sperm chemotaxis
  • 436
  • 6.
  • Species Specificity of Sperm Chemotaxis
  • 442
  • 4.3.
  • 7.
  • Molecular Mechanism of Sperm Chemotaxis
  • 443
  • 8.
  • Open questions
  • 445
  • 8.
  • Chemotropic Guidance of Axons in the Nervous System
  • 456
  • 1.
  • The role of gamones in the archegoniata
  • Growthcone Guidance by Short- and Long-Range Cues
  • 456
  • 2.
  • Chemoattraction and Chemorepulsion in the Nervous System
  • 458
  • 2.1.
  • Chemoattraction
  • 458
  • 2.2.
  • Chemorepulsion
  • 31
  • 462
  • 3.
  • Molecular Mechanism of Chemoattraction and Chemorepulsion
  • 467
  • 3.1.
  • Chemoattractants and chemorepellents
  • 467
  • 4.
  • Switching Mechanism of Chemoattraction and Chemorepulsion
  • 470
  • 4.4.
  • 5.
  • Future Challenges
  • 471
  • 9.
  • Commonality and Diversity of Chemotaxis
  • 477
  • 1.
  • Motility Mechanisms
  • 477
  • 2.
  • Embryophyta use chemotropism in fertilization
  • Behavioral Mechanisms of Chemotaxis
  • 479
  • 3.
  • Molecular Mechanisms of Chemotaxis
  • 480
  • 4.
  • Other Taxes
  • 482
  • 4.1.
  • Thermotaxis
  • 34
  • 483
  • 4.2.
  • Phototaxis
  • 484
  • 4.5.
  • Relations to other eukaryotic chemosensory systems
  • 34
  • 2.
  • 5.
  • The Role of Chemotaxis in Colonizing New Biotopes: Social Aspects
  • 36
  • 5.1.
  • Problems related to tests in natural habitats
  • 36
  • 5.2.
  • Cooperative consortia, biofilms, and other associations
  • 37
  • 5.3.
  • Cell Motility Is a Basic and Universal Phenomenon Among Living Organisms
  • Microbial associations in natural habitats
  • 39
  • 6.
  • The Role of Chemotaxis in Differentiation Processes of Multicellular Organisms
  • 41
  • 6.1.
  • The cytoskeleton is central in amoeboid crawling movements
  • 42
  • 6.2.
  • Physical guidance must not be confused with chemotaxis
  • 10
  • 43
  • 6.3.
  • Model systems to analyze motility in differentiation processes
  • 44
  • 3.
  • Bacterial Chemotaxis
  • 53
  • 2.
  • Bacterial Motility
  • 54
  • 2.1.
  • 2.1.
  • Motility types
  • 54
  • 2.2.
  • Bacterial flagella
  • 61
  • 2.3.
  • Modes of swimming behavior
  • 84
  • 2.4.
  • Active swimming by means of flagella and cilia
  • The gradient sensed by bacteria: temporal vs. spatial
  • 87
  • 2.5.
  • Excitation and adaptation
  • 89
  • 3.
  • Techniques to Measure Motility and Chemotaxis
  • 90
  • 3.1.
  • Assays in which a gradient of the stimulant is established by diffusion
Control code
56364064
Dimensions
24 cm
Extent
xvi, 499 pages
Isbn
9781860944130
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other physical details
illustrations
Label
Chemotaxis, Michael Eisenbach ; with contributions from Joseph W. Lengeler [and others]
Publication
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • 10
  • 90
  • 3.2.
  • Population migration in a preformed liquid gradient
  • 95
  • 3.3.
  • Ring forming assay on semisolid agar
  • 95
  • 3.4.
  • Tracking free-swimming bacteria (behavioral assays)
  • 97
  • 2.2.
  • 3.5.
  • Flagellar rotation
  • 98
  • 4.
  • Chemotactic Stimuli for Bacteria
  • 101
  • 4.1.
  • Types of stimuli
  • 101
  • 4.2.
  • Swarming movements
  • General characteristics of stimuli
  • 103
  • 4.3.
  • Diversity of stimuli in different species
  • 104
  • 4.4.
  • Are the stimuli themselves detected or their metabolic products?
  • 105
  • 5.
  • Chemotaxis-Related Genes
  • 11
  • 109
  • 6.
  • Chemotaxis Receptors
  • 113
  • 6.1.
  • Chemotaxis-specific receptors
  • 113
  • 6.2.
  • Dual-function receptors
  • 123
  • 2.3.
  • 6.3.
  • Chemorepellent receptors
  • 125
  • 7.
  • Other Chemotaxis Proteins
  • 127
  • 7.1.
  • CheA
  • 127
  • 7.2.
  • Gliding and twitching movements
  • CheB
  • 130
  • 7.3.
  • CheR
  • 132
  • 7.4.
  • CheW
  • 132
  • 7.5.
  • CheY
  • 12
  • 134
  • 7.6.
  • CheZ
  • 143
  • 8.
  • Signal Transduction During Chemotaxis
  • 147
  • 8.1.
  • History
  • 147
  • 2.4.
  • 8.2.
  • Mechanism of excitation
  • 147
  • 8.3.
  • Mechanism of adaptation
  • 159
  • 8.4.
  • A nonconventional signal transduction pathway in E. coli
  • 163
  • 8.5.
  • Crawling and amoeboid movements
  • Variations in signal transduction pathways in other bacterial species
  • 164
  • 4.
  • Chemotaxis as a Means of Cell-Cell Communication in Bacteria
  • 216
  • 2.
  • Pattern Formation by E. coli and Salmonella
  • 217
  • 2.1.
  • Pattern formation in minimal medium and the role of the Tar receptor
  • 13
  • 217
  • 2.2.
  • Pattern formation by Salmonella in complex medium
  • 220
  • 2.3.
  • A potential biological role for pattern formation in E. coli and Salmonella
  • 220
  • 3.
  • Chemotaxis Systems in Bacterial Swarming
  • 221
  • 2.
  • 2.5.
  • 3.1.
  • Swarming motility
  • 221
  • 3.2.
  • Intercellular signaling and swarming
  • 222
  • 4.
  • Pattern Formation in Paenibacilli
  • 224
  • 4.1.
  • Problems related to nomenclature
  • Paenibacillus dendritiformis morphotypes
  • 224
  • 4.2.
  • Pattern formation by P. vortex
  • 226
  • 4.3.
  • Morphotype "nebula"
  • 226
  • 4.4.
  • Mutants of P. dendritiformis defective in pattern formation: phenotypes and reconstitution
  • 14
  • 227
  • 4.5.
  • Pattern formation by other bacteria
  • 230
  • 5.
  • Chemotaxis in the Life Cycle of the Myxobacteria
  • 230
  • 5.1.
  • Introduction to the myxobacteria
  • 230
  • 3.
  • 5.2.
  • Direct evidence for chemotaxis
  • 234
  • 5.3.
  • Sensory transduction systems
  • 237
  • 5.4.
  • The role of intercellular signaling in development
  • 241
  • 5.
  • The Physiological Role of Chemotaxis: Sensory Aspects
  • Molecular Mechanisms of Chemotaxis in Amoebae
  • 253
  • 1.1.
  • Functions of amoeboid chemotaxis
  • 254
  • 2.
  • Amoeboid Motility
  • 256
  • 2.1.
  • The motility cycle
  • 15
  • 257
  • 2.2.
  • The cytoskeleton
  • 262
  • 2.3.
  • Adhesion
  • 267
  • 2.4.
  • The gradient sensed by amoebae: temporal vs. spatial sensing
  • 270
  • 3.1.
  • 2.5.
  • Excitation and adaptation
  • 272
  • 3.
  • Techniques to Measure Motility and Chemotaxis
  • 273
  • 3.1.
  • Assays in which a gradient of the stimulant is established by diffusion
  • 274
  • 3.2.
  • Chemotaxis among the prokaryotes
  • Assays utilizing global temporal increases (upshift)
  • 276
  • 3.3.
  • Tracking amoebae in situ
  • 277
  • 4.
  • Signal Transduction During Chemotaxis
  • 278
  • 4.1.
  • Dictyostelium
  • 16
  • 278
  • 4.2.
  • Mesenchymal cells
  • 287
  • 6.
  • Physiology and Molecular Mechanisms of Chemotaxis of White Blood Cells
  • 308
  • 2.
  • Neutrophil Chemoattractants
  • 309
  • 3.2.
  • 3.
  • The Transition from Circulating to Migrating Cells
  • 310
  • 4.
  • Neutrophil Migration
  • 315
  • 4.2.
  • Assays of neutrophil motility
  • 317
  • 5.
  • Chemotaxis -- A Basic and Universal Phenomenon Among Microorganisms and Eukaryotic Cells
  • Chemotaxis among eukaryotic organisms
  • Cell Polarization
  • 328
  • 5.1.
  • Morphological and behavioral aspects of polarization
  • 329
  • 5.2.
  • Molecular aspects of polarization
  • 331
  • 5.3.
  • Development of polarity
  • 22
  • 332
  • 6.
  • Two-Dimensional Versus Three-Dimensional Migration
  • 334
  • 6.1.
  • Migration on a two-dimensional surface
  • 334
  • 6.2.
  • Migration in a three-dimensional matrix
  • 335
  • 4.
  • 7.
  • Force Generation During Migration
  • 336
  • 7.1.
  • Lamellipodium extension
  • 336
  • 7.2.
  • Traction
  • 338
  • 7.3.
  • The Role of Chemotaxis in Fertilization and Reproduction
  • Rear retraction
  • 338
  • 8.
  • Migratory Responses to Multiple Stimuli
  • 339
  • 8.1.
  • Contact guidance
  • 339
  • 8.2.
  • Multiple chemoattractants
  • 28
  • 339
  • 9.
  • Signal Transduction
  • 340
  • 9.1.
  • Ligand-receptor binding and processing
  • 341
  • 9.2.
  • Heterotrimeric G-proteins
  • 347
  • 4.1.
  • 9.3.
  • G-protein effectors in neutrophils
  • 351
  • 9.4.
  • Regulation of G-protein-effector coupling
  • 377
  • 9.5.
  • Integration of the signaling pathways
  • 378
  • 7.
  • The role of chemotaxis in fertilization
  • Sperm Chemotaxis
  • 409
  • 2.
  • Sperm Motility
  • 409
  • 2.1.
  • The flagellum
  • 410
  • 2.2.
  • Flagellar function
  • 29
  • 412
  • 2.3.
  • Techniques for measuring sperm motility
  • 412
  • 2.4.
  • Types of sperm motility in different species
  • 414
  • 2.5.
  • Types of sperm motility within the female genital tract
  • 415
  • 4.2.
  • 3.
  • Criteria and Assays for Sperm Chemotaxis
  • 418
  • 3.1.
  • Accumulation assays
  • 419
  • 3.2.
  • Directionality assays
  • 422
  • 4.
  • The role of gamones in the brown algae and in fungi
  • Chemotaxis of Nonmammalian Spermatozoa
  • 424
  • 5.
  • Chemotaxis of Mammalian Spermatozoa
  • 427
  • 5.1.
  • Early observations interpreted as sperm chemotaxis
  • 428
  • 5.2.
  • Recent studies of sperm chemotaxis in mammals
  • 7
  • 30
  • 429
  • 5.3.
  • Mammalian sperm chemoattractants
  • 431
  • 5.4.
  • Physiological significance of mammalian sperm chemotaxis
  • 436
  • 6.
  • Species Specificity of Sperm Chemotaxis
  • 442
  • 4.3.
  • 7.
  • Molecular Mechanism of Sperm Chemotaxis
  • 443
  • 8.
  • Open questions
  • 445
  • 8.
  • Chemotropic Guidance of Axons in the Nervous System
  • 456
  • 1.
  • The role of gamones in the archegoniata
  • Growthcone Guidance by Short- and Long-Range Cues
  • 456
  • 2.
  • Chemoattraction and Chemorepulsion in the Nervous System
  • 458
  • 2.1.
  • Chemoattraction
  • 458
  • 2.2.
  • Chemorepulsion
  • 31
  • 462
  • 3.
  • Molecular Mechanism of Chemoattraction and Chemorepulsion
  • 467
  • 3.1.
  • Chemoattractants and chemorepellents
  • 467
  • 4.
  • Switching Mechanism of Chemoattraction and Chemorepulsion
  • 470
  • 4.4.
  • 5.
  • Future Challenges
  • 471
  • 9.
  • Commonality and Diversity of Chemotaxis
  • 477
  • 1.
  • Motility Mechanisms
  • 477
  • 2.
  • Embryophyta use chemotropism in fertilization
  • Behavioral Mechanisms of Chemotaxis
  • 479
  • 3.
  • Molecular Mechanisms of Chemotaxis
  • 480
  • 4.
  • Other Taxes
  • 482
  • 4.1.
  • Thermotaxis
  • 34
  • 483
  • 4.2.
  • Phototaxis
  • 484
  • 4.5.
  • Relations to other eukaryotic chemosensory systems
  • 34
  • 2.
  • 5.
  • The Role of Chemotaxis in Colonizing New Biotopes: Social Aspects
  • 36
  • 5.1.
  • Problems related to tests in natural habitats
  • 36
  • 5.2.
  • Cooperative consortia, biofilms, and other associations
  • 37
  • 5.3.
  • Cell Motility Is a Basic and Universal Phenomenon Among Living Organisms
  • Microbial associations in natural habitats
  • 39
  • 6.
  • The Role of Chemotaxis in Differentiation Processes of Multicellular Organisms
  • 41
  • 6.1.
  • The cytoskeleton is central in amoeboid crawling movements
  • 42
  • 6.2.
  • Physical guidance must not be confused with chemotaxis
  • 10
  • 43
  • 6.3.
  • Model systems to analyze motility in differentiation processes
  • 44
  • 3.
  • Bacterial Chemotaxis
  • 53
  • 2.
  • Bacterial Motility
  • 54
  • 2.1.
  • 2.1.
  • Motility types
  • 54
  • 2.2.
  • Bacterial flagella
  • 61
  • 2.3.
  • Modes of swimming behavior
  • 84
  • 2.4.
  • Active swimming by means of flagella and cilia
  • The gradient sensed by bacteria: temporal vs. spatial
  • 87
  • 2.5.
  • Excitation and adaptation
  • 89
  • 3.
  • Techniques to Measure Motility and Chemotaxis
  • 90
  • 3.1.
  • Assays in which a gradient of the stimulant is established by diffusion
Control code
56364064
Dimensions
24 cm
Extent
xvi, 499 pages
Isbn
9781860944130
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other physical details
illustrations

Library Locations

    • Ellis LibraryBorrow it
      1020 Lowry Street, Columbia, MO, 65201, US
      38.944491 -92.326012
Processing Feedback ...