The Resource Conformal geometry of surfaces in S4 and quaternions, F.E. Burstall [and others]
Conformal geometry of surfaces in S4 and quaternions, F.E. Burstall [and others]
Resource Information
The item Conformal geometry of surfaces in S4 and quaternions, F.E. Burstall [and others] represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Conformal geometry of surfaces in S4 and quaternions, F.E. Burstall [and others] represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 1 library branch.
- Summary
- The conformal geometry of surfaces recently developed by the authors leads to a unified understanding of algebraic curve theory and the geometry of surfaces on the basis of a quaternionic-valued function theory. The book offers an elementary introduction to the subject but takes the reader to rather advanced topics. Willmore surfaces in the foursphere, their Bcklund and Darboux transforms are covered, and a new proof of the classification of Willmore spheres is given
- Language
- eng
- Extent
- viii, 86 pages
- Contents
-
- Quaternions
- Linear algebra over the quaternions
- Projective spaces
- Vector bundles
- The mean curvature sphere
- Willmore Surfaces
- Metric and affine conformal geometry
- Twistor projections
- Bcklund transforms of Willmore surfaces
- Willmore surfaces in S3
- Spherical Willmore surfaces in HP1
- Darboux transforms
- Appendix: The bundle L. Holomorphicity and the Ejiri theorem
- Isbn
- 9783540430087
- Label
- Conformal geometry of surfaces in S4 and quaternions
- Title
- Conformal geometry of surfaces in S4 and quaternions
- Statement of responsibility
- F.E. Burstall [and others]
- Language
- eng
- Summary
- The conformal geometry of surfaces recently developed by the authors leads to a unified understanding of algebraic curve theory and the geometry of surfaces on the basis of a quaternionic-valued function theory. The book offers an elementary introduction to the subject but takes the reader to rather advanced topics. Willmore surfaces in the foursphere, their Bcklund and Darboux transforms are covered, and a new proof of the classification of Willmore spheres is given
- Cataloging source
- OHX
- http://library.link/vocab/creatorDate
- 1956-
- http://library.link/vocab/creatorName
- Burstall, Francis E.
- Index
- index present
- Literary form
- non fiction
- Nature of contents
- bibliography
- Series statement
- Lecture notes in mathematics,
- Series volume
- v. 1772
- http://library.link/vocab/subjectName
-
- Conformal mapping
- Quaternions
- Surfaces, Representation of
- Conformal geometry
- Label
- Conformal geometry of surfaces in S4 and quaternions, F.E. Burstall [and others]
- Bibliography note
- Includes bibliographical references (page 87) and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Quaternions -- Linear algebra over the quaternions -- Projective spaces -- Vector bundles -- The mean curvature sphere -- Willmore Surfaces -- Metric and affine conformal geometry -- Twistor projections -- Bcklund transforms of Willmore surfaces -- Willmore surfaces in S3 -- Spherical Willmore surfaces in HP1 -- Darboux transforms -- Appendix: The bundle L. Holomorphicity and the Ejiri theorem
- Control code
- 49045360
- Dimensions
- 24 cm
- Extent
- viii, 86 pages
- Isbn
- 9783540430087
- Isbn Type
- (pbk.)
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Label
- Conformal geometry of surfaces in S4 and quaternions, F.E. Burstall [and others]
- Bibliography note
- Includes bibliographical references (page 87) and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Quaternions -- Linear algebra over the quaternions -- Projective spaces -- Vector bundles -- The mean curvature sphere -- Willmore Surfaces -- Metric and affine conformal geometry -- Twistor projections -- Bcklund transforms of Willmore surfaces -- Willmore surfaces in S3 -- Spherical Willmore surfaces in HP1 -- Darboux transforms -- Appendix: The bundle L. Holomorphicity and the Ejiri theorem
- Control code
- 49045360
- Dimensions
- 24 cm
- Extent
- viii, 86 pages
- Isbn
- 9783540430087
- Isbn Type
- (pbk.)
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Conformal-geometry-of-surfaces-in-S4-and/t-u3ZDNjIXw/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Conformal-geometry-of-surfaces-in-S4-and/t-u3ZDNjIXw/">Conformal geometry of surfaces in S4 and quaternions, F.E. Burstall [and others]</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Conformal geometry of surfaces in S4 and quaternions, F.E. Burstall [and others]
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Conformal-geometry-of-surfaces-in-S4-and/t-u3ZDNjIXw/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Conformal-geometry-of-surfaces-in-S4-and/t-u3ZDNjIXw/">Conformal geometry of surfaces in S4 and quaternions, F.E. Burstall [and others]</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>