The Resource Deep learning with Python : a hands-on introduction, Nikhil Ketkar
Deep learning with Python : a hands-on introduction, Nikhil Ketkar
Resource Information
The item Deep learning with Python : a hands-on introduction, Nikhil Ketkar represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 2 library branches.
Resource Information
The item Deep learning with Python : a hands-on introduction, Nikhil Ketkar represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 2 library branches.
- Summary
- Discover the practical aspects of implementing deep-learning solutions using the rich Python ecosystem. This book bridges the gap between the academic state-of-the-art and the industry state-of-the-practice by introducing you to deep learning frameworks such as Keras, Theano, and Caffe. The practicalities of these frameworks is often acquired by practitioners by reading source code, manuals, and posting questions on community forums, which tends to be a slow and a painful process. Deep Learning with Python allows you to ramp up to such practical know-how in a short period of time and focus more on the domain, models, and algorithms. This book briefly covers the mathematical prerequisites and fundamentals of deep learning, making this book a good starting point for software developers who want to get started in deep learning. A brief survey of deep learning architectures is also included. Deep Learning with Python also introduces you to key concepts of automatic differentiation and GPU computation which, while not central to deep learning, are critical when it comes to conducting large scale experiments. You will: Leverage deep learning frameworks in Python namely, Keras, Theano, and Caffe Gain the fundamentals of deep learning with mathematical prerequisites Discover the practical considerations of large scale experiments Take deep learning models to production
- Language
- eng
- Extent
- 1 online resource
- Contents
-
- At a Glance; Contents; About the Author; About the Technical Reviewer; Acknowledgments; Chapter 1: Introduction to Deep Learning; Historical Context; Advances in Related Fields; Prerequisites ; Overview of Subsequent Chapters; Installing the Required Libraries ; Chapter 2: Machine Learning Fundamentals; Intuition; Binary Classification; Regression; Generalization; Regularization; Summary; Chapter 3: Feed Forward Neural Networks; Unit; Overall Structure of a Neural Network; Expressing the Neural Network in Vector Form; Evaluating the output of the Neural Network
- Training the Neural NetworkDeriving Cost Functions using Maximum Likelihood; Binary Cross Entropy; Cross Entropy; Squared Error; Summary of Loss Functions; Types of Units/Activation Functions/Layers; Linear Unit; Sigmoid Unit; Softmax Layer; Rectified Linear Unit (ReLU); Hyperbolic Tangent; Neural Network Hands-on with AutoGrad; Summary; Chapter 4: Introduction to Theano; What is Theano; Theano Hands-On; Summary; Chapter 5: Convolutional Neural Networks; Convolution Operation; Pooling Operation; Convolution-Detector-Pooling Building Block; Convolution Variants; Intuition behind CNNs; Summary
- Chapter 6: Recurrent Neural NetworksRNN Basics; Training RNNs; Bidirectional RNNs; Gradient Explosion and Vanishing; Gradient Clipping; Long Short Term Memory; Summary; Chapter 7: Introduction to Keras; Summary; Chapter 8: Stochastic Gradient Descent; Optimization Problems; Method of Steepest Descent; Batch, Stochastic (Single and Mini-batch) Descent; Batch; Stochastic Single Example; Stochastic Mini-batch; Batch vs. Stochastic; Challenges with SGD; Local Minima; Saddle Points; Selecting the Learning Rate; Slow Progress in Narrow Valleys; Algorithmic Variations on SGD; Momentum
- Nesterov Accelerated Gradient (NAS)Annealing and Learning Rate Schedules; Adagrad; RMSProp; Adadelta; Adam; Resilient Backpropagation; Equilibrated SGD; Tricks and Tips for using SGD; Preprocessing Input Data; Choice of Activation Function; Preprocessing Target Value; Initializing Parameters; Shuffling Data; Batch Normalization; Early Stopping; Gradient Noise; Parallel and Distributed SGD; Hogwild; Downpour; Hands-on SGD with Downhill; Summary; Chapter 9: Automatic Differentiation; Numerical Differentiation; Symbolic Differentiation; Automatic Differentiation Fundamentals
- Forward/Tangent Linear ModeReverse/Cotangent/Adjoint Linear Mode; Implementation of Automatic Differentiation; Source Code Transformation; Operator Overloading; Hands-on Automatic Differentiation with Autograd; Summary; Chapter 10: Introduction to GPUs; Summary; Index
- Isbn
- 9781484227664
- Label
- Deep learning with Python : a hands-on introduction
- Title
- Deep learning with Python
- Title remainder
- a hands-on introduction
- Statement of responsibility
- Nikhil Ketkar
- Subject
-
- COMPUTERS -- Programming Languages | Python
- Computer programming -- software development
- Data mining
- Data mining
- Electronic books
- Machine learning
- Mathematical theory of computation
- Programming & scripting languages: general
- Python (Computer program language)
- Python (Computer program language)
- Machine learning
- Artificial intelligence
- Language
- eng
- Summary
- Discover the practical aspects of implementing deep-learning solutions using the rich Python ecosystem. This book bridges the gap between the academic state-of-the-art and the industry state-of-the-practice by introducing you to deep learning frameworks such as Keras, Theano, and Caffe. The practicalities of these frameworks is often acquired by practitioners by reading source code, manuals, and posting questions on community forums, which tends to be a slow and a painful process. Deep Learning with Python allows you to ramp up to such practical know-how in a short period of time and focus more on the domain, models, and algorithms. This book briefly covers the mathematical prerequisites and fundamentals of deep learning, making this book a good starting point for software developers who want to get started in deep learning. A brief survey of deep learning architectures is also included. Deep Learning with Python also introduces you to key concepts of automatic differentiation and GPU computation which, while not central to deep learning, are critical when it comes to conducting large scale experiments. You will: Leverage deep learning frameworks in Python namely, Keras, Theano, and Caffe Gain the fundamentals of deep learning with mathematical prerequisites Discover the practical considerations of large scale experiments Take deep learning models to production
- Cataloging source
- N$T
- http://library.link/vocab/creatorName
- Ketkar, Nikhil
- Dewey number
- 005.13/3
- Index
- no index present
- LC call number
- QA76.73.P98
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- http://library.link/vocab/subjectName
-
- Machine learning
- Python (Computer program language)
- Data mining
- Computer programming
- Programming & scripting languages: general
- Mathematical theory of computation
- Artificial intelligence
- COMPUTERS
- Data mining
- Machine learning
- Python (Computer program language)
- Label
- Deep learning with Python : a hands-on introduction, Nikhil Ketkar
- Antecedent source
- unknown
- Bibliography note
- Includes bibliographical references
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- At a Glance; Contents; About the Author; About the Technical Reviewer; Acknowledgments; Chapter 1: Introduction to Deep Learning; Historical Context; Advances in Related Fields; Prerequisites ; Overview of Subsequent Chapters; Installing the Required Libraries ; Chapter 2: Machine Learning Fundamentals; Intuition; Binary Classification; Regression; Generalization; Regularization; Summary; Chapter 3: Feed Forward Neural Networks; Unit; Overall Structure of a Neural Network; Expressing the Neural Network in Vector Form; Evaluating the output of the Neural Network
- Training the Neural NetworkDeriving Cost Functions using Maximum Likelihood; Binary Cross Entropy; Cross Entropy; Squared Error; Summary of Loss Functions; Types of Units/Activation Functions/Layers; Linear Unit; Sigmoid Unit; Softmax Layer; Rectified Linear Unit (ReLU); Hyperbolic Tangent; Neural Network Hands-on with AutoGrad; Summary; Chapter 4: Introduction to Theano; What is Theano; Theano Hands-On; Summary; Chapter 5: Convolutional Neural Networks; Convolution Operation; Pooling Operation; Convolution-Detector-Pooling Building Block; Convolution Variants; Intuition behind CNNs; Summary
- Chapter 6: Recurrent Neural NetworksRNN Basics; Training RNNs; Bidirectional RNNs; Gradient Explosion and Vanishing; Gradient Clipping; Long Short Term Memory; Summary; Chapter 7: Introduction to Keras; Summary; Chapter 8: Stochastic Gradient Descent; Optimization Problems; Method of Steepest Descent; Batch, Stochastic (Single and Mini-batch) Descent; Batch; Stochastic Single Example; Stochastic Mini-batch; Batch vs. Stochastic; Challenges with SGD; Local Minima; Saddle Points; Selecting the Learning Rate; Slow Progress in Narrow Valleys; Algorithmic Variations on SGD; Momentum
- Nesterov Accelerated Gradient (NAS)Annealing and Learning Rate Schedules; Adagrad; RMSProp; Adadelta; Adam; Resilient Backpropagation; Equilibrated SGD; Tricks and Tips for using SGD; Preprocessing Input Data; Choice of Activation Function; Preprocessing Target Value; Initializing Parameters; Shuffling Data; Batch Normalization; Early Stopping; Gradient Noise; Parallel and Distributed SGD; Hogwild; Downpour; Hands-on SGD with Downhill; Summary; Chapter 9: Automatic Differentiation; Numerical Differentiation; Symbolic Differentiation; Automatic Differentiation Fundamentals
- Forward/Tangent Linear ModeReverse/Cotangent/Adjoint Linear Mode; Implementation of Automatic Differentiation; Source Code Transformation; Operator Overloading; Hands-on Automatic Differentiation with Autograd; Summary; Chapter 10: Introduction to GPUs; Summary; Index
- Control code
- 982957880
- Dimensions
- unknown
- Extent
- 1 online resource
- File format
- unknown
- Form of item
- online
- Isbn
- 9781484227664
- Level of compression
- unknown
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other control number
- 10.1007/978-1-4842-2766-4
- http://library.link/vocab/ext/overdrive/overdriveId
- cl0501000009
- Quality assurance targets
- not applicable
- Reformatting quality
- unknown
- Sound
- unknown sound
- Specific material designation
- remote
- System control number
- (OCoLC)982957880
- Label
- Deep learning with Python : a hands-on introduction, Nikhil Ketkar
- Antecedent source
- unknown
- Bibliography note
- Includes bibliographical references
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- At a Glance; Contents; About the Author; About the Technical Reviewer; Acknowledgments; Chapter 1: Introduction to Deep Learning; Historical Context; Advances in Related Fields; Prerequisites ; Overview of Subsequent Chapters; Installing the Required Libraries ; Chapter 2: Machine Learning Fundamentals; Intuition; Binary Classification; Regression; Generalization; Regularization; Summary; Chapter 3: Feed Forward Neural Networks; Unit; Overall Structure of a Neural Network; Expressing the Neural Network in Vector Form; Evaluating the output of the Neural Network
- Training the Neural NetworkDeriving Cost Functions using Maximum Likelihood; Binary Cross Entropy; Cross Entropy; Squared Error; Summary of Loss Functions; Types of Units/Activation Functions/Layers; Linear Unit; Sigmoid Unit; Softmax Layer; Rectified Linear Unit (ReLU); Hyperbolic Tangent; Neural Network Hands-on with AutoGrad; Summary; Chapter 4: Introduction to Theano; What is Theano; Theano Hands-On; Summary; Chapter 5: Convolutional Neural Networks; Convolution Operation; Pooling Operation; Convolution-Detector-Pooling Building Block; Convolution Variants; Intuition behind CNNs; Summary
- Chapter 6: Recurrent Neural NetworksRNN Basics; Training RNNs; Bidirectional RNNs; Gradient Explosion and Vanishing; Gradient Clipping; Long Short Term Memory; Summary; Chapter 7: Introduction to Keras; Summary; Chapter 8: Stochastic Gradient Descent; Optimization Problems; Method of Steepest Descent; Batch, Stochastic (Single and Mini-batch) Descent; Batch; Stochastic Single Example; Stochastic Mini-batch; Batch vs. Stochastic; Challenges with SGD; Local Minima; Saddle Points; Selecting the Learning Rate; Slow Progress in Narrow Valleys; Algorithmic Variations on SGD; Momentum
- Nesterov Accelerated Gradient (NAS)Annealing and Learning Rate Schedules; Adagrad; RMSProp; Adadelta; Adam; Resilient Backpropagation; Equilibrated SGD; Tricks and Tips for using SGD; Preprocessing Input Data; Choice of Activation Function; Preprocessing Target Value; Initializing Parameters; Shuffling Data; Batch Normalization; Early Stopping; Gradient Noise; Parallel and Distributed SGD; Hogwild; Downpour; Hands-on SGD with Downhill; Summary; Chapter 9: Automatic Differentiation; Numerical Differentiation; Symbolic Differentiation; Automatic Differentiation Fundamentals
- Forward/Tangent Linear ModeReverse/Cotangent/Adjoint Linear Mode; Implementation of Automatic Differentiation; Source Code Transformation; Operator Overloading; Hands-on Automatic Differentiation with Autograd; Summary; Chapter 10: Introduction to GPUs; Summary; Index
- Control code
- 982957880
- Dimensions
- unknown
- Extent
- 1 online resource
- File format
- unknown
- Form of item
- online
- Isbn
- 9781484227664
- Level of compression
- unknown
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other control number
- 10.1007/978-1-4842-2766-4
- http://library.link/vocab/ext/overdrive/overdriveId
- cl0501000009
- Quality assurance targets
- not applicable
- Reformatting quality
- unknown
- Sound
- unknown sound
- Specific material designation
- remote
- System control number
- (OCoLC)982957880
Subject
- COMPUTERS -- Programming Languages | Python
- Computer programming -- software development
- Data mining
- Data mining
- Electronic books
- Machine learning
- Mathematical theory of computation
- Programming & scripting languages: general
- Python (Computer program language)
- Python (Computer program language)
- Machine learning
- Artificial intelligence
Genre
Member of
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Deep-learning-with-Python--a-hands-on/vzpYUbloiMw/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Deep-learning-with-Python--a-hands-on/vzpYUbloiMw/">Deep learning with Python : a hands-on introduction, Nikhil Ketkar</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Deep learning with Python : a hands-on introduction, Nikhil Ketkar
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Deep-learning-with-Python--a-hands-on/vzpYUbloiMw/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Deep-learning-with-Python--a-hands-on/vzpYUbloiMw/">Deep learning with Python : a hands-on introduction, Nikhil Ketkar</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>