The Resource Degenerate nonlinear diffusion equations, Angelo Favini, Gabriela Marinoschi
Degenerate nonlinear diffusion equations, Angelo Favini, Gabriela Marinoschi
Resource Information
The item Degenerate nonlinear diffusion equations, Angelo Favini, Gabriela Marinoschi represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Degenerate nonlinear diffusion equations, Angelo Favini, Gabriela Marinoschi represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 1 library branch.
- Summary
- "The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asymptotic behaviour, discretization schemes, coefficient identification, and to introduce relevant solving methods for each of them."--Publisher description
- Language
- eng
- Extent
- xxi, 143 pages
- Contents
-
- 1. Existence for parabolic-elliptic degenerate diffusion problems
- 2. Existence for diffusion degenerate problems
- 3. Existence for nonautonomous parabolic-elliptic degenerate diffusion equations
- 4. Parameter identification in a parabolic-elliptic degenerate problem
- Isbn
- 9783642282843
- Label
- Degenerate nonlinear diffusion equations
- Title
- Degenerate nonlinear diffusion equations
- Statement of responsibility
- Angelo Favini, Gabriela Marinoschi
- Language
- eng
- Summary
- "The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asymptotic behaviour, discretization schemes, coefficient identification, and to introduce relevant solving methods for each of them."--Publisher description
- Cataloging source
- BTCTA
- http://library.link/vocab/creatorDate
- 1946-
- http://library.link/vocab/creatorName
- Favini, A.
- Illustrations
- illustrations
- Index
- index present
- Literary form
- non fiction
- Nature of contents
- bibliography
- http://library.link/vocab/relatedWorkOrContributorName
- Marinoschi, Gabriela
- Series statement
- Lecture notes in mathematics
- Series volume
- 2049
- http://library.link/vocab/subjectName
-
- Burgers equation
- Degenerate differential equations
- Label
- Degenerate nonlinear diffusion equations, Angelo Favini, Gabriela Marinoschi
- Bibliography note
- Includes bibliographical references (pages 135-139) and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- 1. Existence for parabolic-elliptic degenerate diffusion problems -- 2. Existence for diffusion degenerate problems -- 3. Existence for nonautonomous parabolic-elliptic degenerate diffusion equations -- 4. Parameter identification in a parabolic-elliptic degenerate problem
- Control code
- 773670668
- Dimensions
- 23 cm
- Extent
- xxi, 143 pages
- Isbn
- 9783642282843
- Isbn Type
- (pbk.)
- Lccn
- 2012936484
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- color illustrations
- System control number
- (OCoLC)773670668
- Label
- Degenerate nonlinear diffusion equations, Angelo Favini, Gabriela Marinoschi
- Bibliography note
- Includes bibliographical references (pages 135-139) and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- 1. Existence for parabolic-elliptic degenerate diffusion problems -- 2. Existence for diffusion degenerate problems -- 3. Existence for nonautonomous parabolic-elliptic degenerate diffusion equations -- 4. Parameter identification in a parabolic-elliptic degenerate problem
- Control code
- 773670668
- Dimensions
- 23 cm
- Extent
- xxi, 143 pages
- Isbn
- 9783642282843
- Isbn Type
- (pbk.)
- Lccn
- 2012936484
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- color illustrations
- System control number
- (OCoLC)773670668
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Degenerate-nonlinear-diffusion-equations-Angelo/xCZq0mpNvJY/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Degenerate-nonlinear-diffusion-equations-Angelo/xCZq0mpNvJY/">Degenerate nonlinear diffusion equations, Angelo Favini, Gabriela Marinoschi</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Degenerate nonlinear diffusion equations, Angelo Favini, Gabriela Marinoschi
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Degenerate-nonlinear-diffusion-equations-Angelo/xCZq0mpNvJY/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Degenerate-nonlinear-diffusion-equations-Angelo/xCZq0mpNvJY/">Degenerate nonlinear diffusion equations, Angelo Favini, Gabriela Marinoschi</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>