The Resource Extension of positive operators and Korovkin theorems, Klaus Donner
Extension of positive operators and Korovkin theorems, Klaus Donner
Resource Information
The item Extension of positive operators and Korovkin theorems, Klaus Donner represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Extension of positive operators and Korovkin theorems, Klaus Donner represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 1 library branch.
- Language
- eng
- Extent
- 1 online resource (xii, 181 pages)
- Contents
-
- Cone embeddings for vector lattices
- A vector-valued Hahn-Banach theorem
- Bisublinear and subbilinear functionals
- Extension of L1-valued positive operators
- Extension of positive operators in Lp-spaces
- The Korovkin closure for equicontinuous nets of positive operators
- Korovkin theorems for the identity mapping on classical Banach lattices
- Convergence to vector lattice homomorphisms and essential sets
- Isbn
- 9783540389699
- Label
- Extension of positive operators and Korovkin theorems
- Title
- Extension of positive operators and Korovkin theorems
- Statement of responsibility
- Klaus Donner
- Subject
-
- Banach lattices
- Banach lattices
- Banach, Treillis de
- Banach-Verband
- Convergence
- Convergence
- Convergence
- Convergence (Mathématiques)
- Erweiterung
- Korovkin-Satz
- Linear operators
- Linear operators
- Linear operators
- Operatortheorie
- Operatortheorie
- Opérateurs linéaires
- Positive operators
- Positive operators
- Positive operators
- Positiver Operator
- Positiver linearer Operator
- Banach lattices
- Language
- eng
- Action
- digitized
- Cataloging source
- SPLNM
- http://library.link/vocab/creatorDate
- 1945-
- http://library.link/vocab/creatorName
- Donner, Klaus
- Dewey number
- 510
- Illustrations
- illustrations
- Index
- index present
- LC call number
-
- QA3
- QA329.2
- LC item number
- .L28 no. 904
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- Series statement
- Lecture notes in mathematics,
- Series volume
- 904
- http://library.link/vocab/subjectName
-
- Linear operators
- Positive operators
- Banach lattices
- Convergence
- Opérateurs linéaires
- Banach, Treillis de
- Convergence (Mathématiques)
- Banach lattices
- Convergence
- Linear operators
- Positive operators
- Operatortheorie
- Positiver Operator
- Erweiterung
- Korovkin-Satz
- Banach-Verband
- Operatortheorie
- Positiver linearer Operator
- Label
- Extension of positive operators and Korovkin theorems, Klaus Donner
- Bibliography note
- Includes bibliographical references (pages 177-181) and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Cone embeddings for vector lattices -- A vector-valued Hahn-Banach theorem -- Bisublinear and subbilinear functionals -- Extension of L1-valued positive operators -- Extension of positive operators in Lp-spaces -- The Korovkin closure for equicontinuous nets of positive operators -- Korovkin theorems for the identity mapping on classical Banach lattices -- Convergence to vector lattice homomorphisms and essential sets
- Control code
- 289101921
- Dimensions
- unknown
- Extent
- 1 online resource (xii, 181 pages)
- Form of item
- online
- Isbn
- 9783540389699
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other physical details
- illustrations.
- Reproduction note
- Electronic reproduction.
- Sound
- unknown sound
- Specific material designation
- remote
- System control number
- (OCoLC)289101921
- System details
- Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
- Label
- Extension of positive operators and Korovkin theorems, Klaus Donner
- Bibliography note
- Includes bibliographical references (pages 177-181) and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Cone embeddings for vector lattices -- A vector-valued Hahn-Banach theorem -- Bisublinear and subbilinear functionals -- Extension of L1-valued positive operators -- Extension of positive operators in Lp-spaces -- The Korovkin closure for equicontinuous nets of positive operators -- Korovkin theorems for the identity mapping on classical Banach lattices -- Convergence to vector lattice homomorphisms and essential sets
- Control code
- 289101921
- Dimensions
- unknown
- Extent
- 1 online resource (xii, 181 pages)
- Form of item
- online
- Isbn
- 9783540389699
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other physical details
- illustrations.
- Reproduction note
- Electronic reproduction.
- Sound
- unknown sound
- Specific material designation
- remote
- System control number
- (OCoLC)289101921
- System details
- Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
Subject
- Banach lattices
- Banach lattices
- Banach, Treillis de
- Banach-Verband
- Convergence
- Convergence
- Convergence
- Convergence (Mathématiques)
- Erweiterung
- Korovkin-Satz
- Linear operators
- Linear operators
- Linear operators
- Operatortheorie
- Operatortheorie
- Opérateurs linéaires
- Positive operators
- Positive operators
- Positive operators
- Positiver Operator
- Positiver linearer Operator
- Banach lattices
Member of
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Extension-of-positive-operators-and-Korovkin/l5mzON2r6UM/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Extension-of-positive-operators-and-Korovkin/l5mzON2r6UM/">Extension of positive operators and Korovkin theorems, Klaus Donner</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Extension of positive operators and Korovkin theorems, Klaus Donner
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Extension-of-positive-operators-and-Korovkin/l5mzON2r6UM/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Extension-of-positive-operators-and-Korovkin/l5mzON2r6UM/">Extension of positive operators and Korovkin theorems, Klaus Donner</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>