Coverart for item
The Resource Fundamentals of convex analysis, Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal

Fundamentals of convex analysis, Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal

Label
Fundamentals of convex analysis
Title
Fundamentals of convex analysis
Statement of responsibility
Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal
Creator
Contributor
Subject
Language
eng
Member of
Cataloging source
DLC
http://library.link/vocab/creatorDate
1949-
http://library.link/vocab/creatorName
Hiriart-Urruty, Jean-Baptiste
Dewey number
515.8
Illustrations
illustrations
Index
index present
LC call number
QA331.5
LC item number
.H58 2001
Literary form
non fiction
Nature of contents
bibliography
http://library.link/vocab/relatedWorkOrContributorDate
1944-
http://library.link/vocab/relatedWorkOrContributorName
Lemaréchal, Claude
Series statement
Grundlehren text editions,
http://library.link/vocab/subjectName
  • Convex functions
  • Convex sets
  • Mathematical analysis
Label
Fundamentals of convex analysis, Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal
Instantiates
Publication
Bibliography note
Includes bibliographical references (pages [251]-252) and index
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
Introduction: Notation, Elementary Results -- A. Convex Sets -- 1. Generalities -- 2. Convex Sets Attached to a Convex Set -- 3. Projection onto Closed Convex Sets -- 4. Separation and Applications -- 5. Conical Approximations of Convex Sets -- B. Convex Functions -- 1. Basic Definitions and Examples -- 2. Functional Operations Preserving Convexity -- 3. Local and Global Behaviour of a Convex Function -- 4. First- and Second-Order Differentiation -- C. Sublinearity and Support Functions -- 1. Sublinear Functions -- 2. The Support Function of a Nonempty Set -- 3. Correspondence Between Convex Sets and Sublinear Functions -- D. Subdifferentials of Finite Convex Functions -- 1. The Subdifferential: Definitions and Interpretations -- 2. Local Properties of the Subdifferential -- 3. First Examples -- 4. Calculus Rules with Subdifferentials -- 5. Further Examples -- 6. The Subdifferential as a Multifunction -- E. Conjugacy in Convex Analysis -- 1. The Convex Conjugate of a Function -- 2. Calculus Rules on the Conjugacy Operation -- 3. Various Examples -- 4. Differentiability of a Conjugate Function
Control code
47915788
Dimensions
24 cm
Extent
x, 259 pages
Isbn
9783540422051
Isbn Type
(softcover : alk. paper)
Lccn
2001053271
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other physical details
illustrations
Label
Fundamentals of convex analysis, Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal
Publication
Bibliography note
Includes bibliographical references (pages [251]-252) and index
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
Introduction: Notation, Elementary Results -- A. Convex Sets -- 1. Generalities -- 2. Convex Sets Attached to a Convex Set -- 3. Projection onto Closed Convex Sets -- 4. Separation and Applications -- 5. Conical Approximations of Convex Sets -- B. Convex Functions -- 1. Basic Definitions and Examples -- 2. Functional Operations Preserving Convexity -- 3. Local and Global Behaviour of a Convex Function -- 4. First- and Second-Order Differentiation -- C. Sublinearity and Support Functions -- 1. Sublinear Functions -- 2. The Support Function of a Nonempty Set -- 3. Correspondence Between Convex Sets and Sublinear Functions -- D. Subdifferentials of Finite Convex Functions -- 1. The Subdifferential: Definitions and Interpretations -- 2. Local Properties of the Subdifferential -- 3. First Examples -- 4. Calculus Rules with Subdifferentials -- 5. Further Examples -- 6. The Subdifferential as a Multifunction -- E. Conjugacy in Convex Analysis -- 1. The Convex Conjugate of a Function -- 2. Calculus Rules on the Conjugacy Operation -- 3. Various Examples -- 4. Differentiability of a Conjugate Function
Control code
47915788
Dimensions
24 cm
Extent
x, 259 pages
Isbn
9783540422051
Isbn Type
(softcover : alk. paper)
Lccn
2001053271
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other physical details
illustrations

Library Locations

    • Mathematical Sciences LibraryBorrow it
      104 Ellis Library, Columbia, MO, 65201, US
      38.944377 -92.326537
Processing Feedback ...