The Resource Fundamentals of convex analysis, Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal
Fundamentals of convex analysis, Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal
Resource Information
The item Fundamentals of convex analysis, Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Fundamentals of convex analysis, Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 1 library branch.
- Extent
- x, 259 pages
- Contents
-
- Introduction: Notation, Elementary Results
- A. Convex Sets
- 1. Generalities
- 2. Convex Sets Attached to a Convex Set
- 3. Projection onto Closed Convex Sets
- 4. Separation and Applications
- 5. Conical Approximations of Convex Sets
- B. Convex Functions
- 1. Basic Definitions and Examples
- 2. Functional Operations Preserving Convexity
- 3. Local and Global Behaviour of a Convex Function
- 4. First- and Second-Order Differentiation
- C. Sublinearity and Support Functions
- 1. Sublinear Functions
- 2. The Support Function of a Nonempty Set
- 3. Correspondence Between Convex Sets and Sublinear Functions
- D. Subdifferentials of Finite Convex Functions
- 1. The Subdifferential: Definitions and Interpretations
- 2. Local Properties of the Subdifferential
- 3. First Examples
- 4. Calculus Rules with Subdifferentials
- 5. Further Examples
- 6. The Subdifferential as a Multifunction
- E. Conjugacy in Convex Analysis
- 1. The Convex Conjugate of a Function
- 2. Calculus Rules on the Conjugacy Operation
- 3. Various Examples
- 4. Differentiability of a Conjugate Function
- Isbn
- 9783540422051
- Label
- Fundamentals of convex analysis
- Title
- Fundamentals of convex analysis
- Statement of responsibility
- Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal
- Language
- eng
- Cataloging source
- DLC
- http://library.link/vocab/creatorDate
- 1949-
- http://library.link/vocab/creatorName
- Hiriart-Urruty, Jean-Baptiste
- Dewey number
- 515.8
- Illustrations
- illustrations
- Index
- index present
- LC call number
- QA331.5
- LC item number
- .H58 2001
- Literary form
- non fiction
- Nature of contents
- bibliography
- http://library.link/vocab/relatedWorkOrContributorDate
- 1944-
- http://library.link/vocab/relatedWorkOrContributorName
- Lemaréchal, Claude
- Series statement
- Grundlehren text editions,
- http://library.link/vocab/subjectName
-
- Convex functions
- Convex sets
- Mathematical analysis
- Label
- Fundamentals of convex analysis, Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal
- Bibliography note
- Includes bibliographical references (pages [251]-252) and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Introduction: Notation, Elementary Results -- A. Convex Sets -- 1. Generalities -- 2. Convex Sets Attached to a Convex Set -- 3. Projection onto Closed Convex Sets -- 4. Separation and Applications -- 5. Conical Approximations of Convex Sets -- B. Convex Functions -- 1. Basic Definitions and Examples -- 2. Functional Operations Preserving Convexity -- 3. Local and Global Behaviour of a Convex Function -- 4. First- and Second-Order Differentiation -- C. Sublinearity and Support Functions -- 1. Sublinear Functions -- 2. The Support Function of a Nonempty Set -- 3. Correspondence Between Convex Sets and Sublinear Functions -- D. Subdifferentials of Finite Convex Functions -- 1. The Subdifferential: Definitions and Interpretations -- 2. Local Properties of the Subdifferential -- 3. First Examples -- 4. Calculus Rules with Subdifferentials -- 5. Further Examples -- 6. The Subdifferential as a Multifunction -- E. Conjugacy in Convex Analysis -- 1. The Convex Conjugate of a Function -- 2. Calculus Rules on the Conjugacy Operation -- 3. Various Examples -- 4. Differentiability of a Conjugate Function
- Control code
- 47915788
- Dimensions
- 24 cm
- Extent
- x, 259 pages
- Isbn
- 9783540422051
- Isbn Type
- (softcover : alk. paper)
- Lccn
- 2001053271
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- illustrations
- Label
- Fundamentals of convex analysis, Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal
- Bibliography note
- Includes bibliographical references (pages [251]-252) and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Introduction: Notation, Elementary Results -- A. Convex Sets -- 1. Generalities -- 2. Convex Sets Attached to a Convex Set -- 3. Projection onto Closed Convex Sets -- 4. Separation and Applications -- 5. Conical Approximations of Convex Sets -- B. Convex Functions -- 1. Basic Definitions and Examples -- 2. Functional Operations Preserving Convexity -- 3. Local and Global Behaviour of a Convex Function -- 4. First- and Second-Order Differentiation -- C. Sublinearity and Support Functions -- 1. Sublinear Functions -- 2. The Support Function of a Nonempty Set -- 3. Correspondence Between Convex Sets and Sublinear Functions -- D. Subdifferentials of Finite Convex Functions -- 1. The Subdifferential: Definitions and Interpretations -- 2. Local Properties of the Subdifferential -- 3. First Examples -- 4. Calculus Rules with Subdifferentials -- 5. Further Examples -- 6. The Subdifferential as a Multifunction -- E. Conjugacy in Convex Analysis -- 1. The Convex Conjugate of a Function -- 2. Calculus Rules on the Conjugacy Operation -- 3. Various Examples -- 4. Differentiability of a Conjugate Function
- Control code
- 47915788
- Dimensions
- 24 cm
- Extent
- x, 259 pages
- Isbn
- 9783540422051
- Isbn Type
- (softcover : alk. paper)
- Lccn
- 2001053271
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- illustrations
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Fundamentals-of-convex-analysis-Jean-Baptiste/FTZEk9ukOfo/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Fundamentals-of-convex-analysis-Jean-Baptiste/FTZEk9ukOfo/">Fundamentals of convex analysis, Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Fundamentals of convex analysis, Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Fundamentals-of-convex-analysis-Jean-Baptiste/FTZEk9ukOfo/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Fundamentals-of-convex-analysis-Jean-Baptiste/FTZEk9ukOfo/">Fundamentals of convex analysis, Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>