The Resource Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics, edited by Mohamed Henini
Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics, edited by Mohamed Henini
Resource Information
The item Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics, edited by Mohamed Henini represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 2 library branches.
Resource Information
The item Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics, edited by Mohamed Henini represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 2 library branches.
- Summary
- The self-assembled nanostructured materials described in this book offer a number of advantages over conventional material technologies in a wide range of sectors. World leaders in the field of self-organisation of nanostructures review the current status of research and development in the field, and give an account of the formation, properties, and self-organisation of semiconductor nanostructures. Chapters on structural, electronic and optical properties, and devices based on self-organised nanostructures are also included. Future research work on self-assembled nanostructures will connect diverse areas of material science, physics, chemistry, electronics and optoelectronics. This book will provide an excellent starting point for workers entering the field and a useful reference to the nanostructured materials research community. It will be useful to any scientist who is involved in nanotechnology and those wishing to gain a view of what is possible with modern fabrication technology. Mohamed Henini is a Professor of Applied Physics at the University of Nottingham. He has authored and co-authored over 750 papers in international journals and conference proceedings and is the founder of two international conferences. He is the Editor-in-Chief of Microelectronics Journal and has edited three previous Elsevier books. Key Features: - Contributors are world leaders in the field - Brings together all the factors which are essential in self-organisation of quantum nanostructures - Reviews the current status of research and development in self-organised nanostructured materials - Provides a ready source of information on a wide range of topics - Useful to any scientist who is involved in nanotechnology - Excellent starting point for workers entering the field - Serves as an excellent reference manual
- Language
- eng
- Extent
- 1 online resource (xvii, 841 pages)
- Contents
-
- Self-Organized Quantum Dot Multilayer Structures; InAs Quantum Dots on AlxGa1-xAs Surfaces and in an AlxGa1-xAs Matrix; Optical Properties of In(Ga)As/GaAs Quantum Dots for Optoelectronic Devices; Cavity Quantum Electrodynamics with Semiconductor Quantum Dots; InAs Quantum Dot Formation Studied at the Atomic Scale by Cross-sectional Scanning Tunnelling Microscopy; Growth and Characterization of Structural and Optical Properties of Polar and Non-polar GaN Quantum Dots; Optical and Vibrational Properties of Self-Assembled GaN Quantum Dots; GaSb/GaAs Quantum Nanostructures by Molecular Beam Epitaxy; Growth and Characterization of ZnO Nano- and Microstructures; Miniband-related 1.4
- 1.8 m︡ Luminescence of Ge/Si Quantum Dot Superlattices; Effects of the Electron-Phonon Interaction in Semiconductor Quantum Dots; Slow Oscillation and Random Fluctuation in Quantum Dots: Can we Overcome?; Radiation Effects in Quantum Dot Structures; Probing and Controlling the Spin State of Single Magnetic Atoms in an Individual Quantum Dot; Quantum Dot Charge and Spin Memory Devices; Engineering of Quantum Dot Nanostructures for Photonic Devices; Advanced Growth Techniques of InAs-system Quantum Dots for Integrated Nanophotonic Circuits; Nanostructured Solar Cells; Quantum Dot Superluminescent Diodes; Quantum Dot-based Mode-locked Lasers and Applications; Quantum Dot Infrared Photodetectors by Metal-Organic Chemical Vapour Deposition; Quantum Dot Structures for Multi-band Infrared and Terahertz Radiation Detection; Optically Driven Schemes for Quantum Computation Based on Self-assembled Quantum Dots; Quantum Optics with Single CdSE/ZnS Colloidal Nanocrystals; PbSe Core, PbSe/PbS and PbSe/PbSe/PbSexS1-x Core-Shell Nanocrystal Quantum Dots: Properties and Applications; Semiconductor Quantum Dots for Biological Applications; Quantum Dot Modification and Cytotoxicity; Colloidal Quantum Dots (QDs) in Optoelectronic Devices
- Solar Cells, Photodetectors, Light-emitting Diodes
- Isbn
- 9780080463254
- Label
- Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics
- Title
- Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics
- Statement of responsibility
- edited by Mohamed Henini
- Language
- eng
- Summary
- The self-assembled nanostructured materials described in this book offer a number of advantages over conventional material technologies in a wide range of sectors. World leaders in the field of self-organisation of nanostructures review the current status of research and development in the field, and give an account of the formation, properties, and self-organisation of semiconductor nanostructures. Chapters on structural, electronic and optical properties, and devices based on self-organised nanostructures are also included. Future research work on self-assembled nanostructures will connect diverse areas of material science, physics, chemistry, electronics and optoelectronics. This book will provide an excellent starting point for workers entering the field and a useful reference to the nanostructured materials research community. It will be useful to any scientist who is involved in nanotechnology and those wishing to gain a view of what is possible with modern fabrication technology. Mohamed Henini is a Professor of Applied Physics at the University of Nottingham. He has authored and co-authored over 750 papers in international journals and conference proceedings and is the founder of two international conferences. He is the Editor-in-Chief of Microelectronics Journal and has edited three previous Elsevier books. Key Features: - Contributors are world leaders in the field - Brings together all the factors which are essential in self-organisation of quantum nanostructures - Reviews the current status of research and development in self-organised nanostructured materials - Provides a ready source of information on a wide range of topics - Useful to any scientist who is involved in nanotechnology - Excellent starting point for workers entering the field - Serves as an excellent reference manual
- Cataloging source
- KNOVL
- Dewey number
- 621.38152
- Illustrations
- illustrations
- Index
- index present
- LC call number
- TA418.9.N35
- LC item number
- H36 2008eb
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- handbooks
- http://library.link/vocab/relatedWorkOrContributorName
- Henini, Mohamed
- http://library.link/vocab/subjectName
-
- Nanostructured materials
- Semiconductors
- Photonics
- TECHNOLOGY & ENGINEERING
- TECHNOLOGY & ENGINEERING
- Nanostructured materials
- Photonics
- Semiconductors
- Halbleitertechnologie
- Nanostrukturiertes Material
- Label
- Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics, edited by Mohamed Henini
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Self-Organized Quantum Dot Multilayer Structures; InAs Quantum Dots on AlxGa1-xAs Surfaces and in an AlxGa1-xAs Matrix; Optical Properties of In(Ga)As/GaAs Quantum Dots for Optoelectronic Devices; Cavity Quantum Electrodynamics with Semiconductor Quantum Dots; InAs Quantum Dot Formation Studied at the Atomic Scale by Cross-sectional Scanning Tunnelling Microscopy; Growth and Characterization of Structural and Optical Properties of Polar and Non-polar GaN Quantum Dots; Optical and Vibrational Properties of Self-Assembled GaN Quantum Dots; GaSb/GaAs Quantum Nanostructures by Molecular Beam Epitaxy; Growth and Characterization of ZnO Nano- and Microstructures; Miniband-related 1.4 -- 1.8 m︡ Luminescence of Ge/Si Quantum Dot Superlattices; Effects of the Electron-Phonon Interaction in Semiconductor Quantum Dots; Slow Oscillation and Random Fluctuation in Quantum Dots: Can we Overcome?; Radiation Effects in Quantum Dot Structures; Probing and Controlling the Spin State of Single Magnetic Atoms in an Individual Quantum Dot; Quantum Dot Charge and Spin Memory Devices; Engineering of Quantum Dot Nanostructures for Photonic Devices; Advanced Growth Techniques of InAs-system Quantum Dots for Integrated Nanophotonic Circuits; Nanostructured Solar Cells; Quantum Dot Superluminescent Diodes; Quantum Dot-based Mode-locked Lasers and Applications; Quantum Dot Infrared Photodetectors by Metal-Organic Chemical Vapour Deposition; Quantum Dot Structures for Multi-band Infrared and Terahertz Radiation Detection; Optically Driven Schemes for Quantum Computation Based on Self-assembled Quantum Dots; Quantum Optics with Single CdSE/ZnS Colloidal Nanocrystals; PbSe Core, PbSe/PbS and PbSe/PbSe/PbSexS1-x Core-Shell Nanocrystal Quantum Dots: Properties and Applications; Semiconductor Quantum Dots for Biological Applications; Quantum Dot Modification and Cytotoxicity; Colloidal Quantum Dots (QDs) in Optoelectronic Devices -- Solar Cells, Photodetectors, Light-emitting Diodes
- Control code
- 556174850
- Dimensions
- unknown
- Extent
- 1 online resource (xvii, 841 pages)
- Form of item
- online
- Isbn
- 9780080463254
- Lccn
- 2012285641
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other physical details
- illustrations
- Specific material designation
- remote
- System control number
- (OCoLC)556174850
- Label
- Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics, edited by Mohamed Henini
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Self-Organized Quantum Dot Multilayer Structures; InAs Quantum Dots on AlxGa1-xAs Surfaces and in an AlxGa1-xAs Matrix; Optical Properties of In(Ga)As/GaAs Quantum Dots for Optoelectronic Devices; Cavity Quantum Electrodynamics with Semiconductor Quantum Dots; InAs Quantum Dot Formation Studied at the Atomic Scale by Cross-sectional Scanning Tunnelling Microscopy; Growth and Characterization of Structural and Optical Properties of Polar and Non-polar GaN Quantum Dots; Optical and Vibrational Properties of Self-Assembled GaN Quantum Dots; GaSb/GaAs Quantum Nanostructures by Molecular Beam Epitaxy; Growth and Characterization of ZnO Nano- and Microstructures; Miniband-related 1.4 -- 1.8 m︡ Luminescence of Ge/Si Quantum Dot Superlattices; Effects of the Electron-Phonon Interaction in Semiconductor Quantum Dots; Slow Oscillation and Random Fluctuation in Quantum Dots: Can we Overcome?; Radiation Effects in Quantum Dot Structures; Probing and Controlling the Spin State of Single Magnetic Atoms in an Individual Quantum Dot; Quantum Dot Charge and Spin Memory Devices; Engineering of Quantum Dot Nanostructures for Photonic Devices; Advanced Growth Techniques of InAs-system Quantum Dots for Integrated Nanophotonic Circuits; Nanostructured Solar Cells; Quantum Dot Superluminescent Diodes; Quantum Dot-based Mode-locked Lasers and Applications; Quantum Dot Infrared Photodetectors by Metal-Organic Chemical Vapour Deposition; Quantum Dot Structures for Multi-band Infrared and Terahertz Radiation Detection; Optically Driven Schemes for Quantum Computation Based on Self-assembled Quantum Dots; Quantum Optics with Single CdSE/ZnS Colloidal Nanocrystals; PbSe Core, PbSe/PbS and PbSe/PbSe/PbSexS1-x Core-Shell Nanocrystal Quantum Dots: Properties and Applications; Semiconductor Quantum Dots for Biological Applications; Quantum Dot Modification and Cytotoxicity; Colloidal Quantum Dots (QDs) in Optoelectronic Devices -- Solar Cells, Photodetectors, Light-emitting Diodes
- Control code
- 556174850
- Dimensions
- unknown
- Extent
- 1 online resource (xvii, 841 pages)
- Form of item
- online
- Isbn
- 9780080463254
- Lccn
- 2012285641
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other physical details
- illustrations
- Specific material designation
- remote
- System control number
- (OCoLC)556174850
Subject
- TECHNOLOGY & ENGINEERING -- Electronics | Semiconductors
- TECHNOLOGY & ENGINEERING -- Electronics | Solid State
- Electronic books
- Halbleitertechnologie
- Nanostructured materials
- Nanostructured materials
- Nanostrukturiertes Material
- Photonics
- Photonics
- Semiconductors
- Semiconductors
Genre
Member of
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Handbook-of-self-assembled-semiconductor/_S_fQsBomtg/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Handbook-of-self-assembled-semiconductor/_S_fQsBomtg/">Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics, edited by Mohamed Henini</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics, edited by Mohamed Henini
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Handbook-of-self-assembled-semiconductor/_S_fQsBomtg/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Handbook-of-self-assembled-semiconductor/_S_fQsBomtg/">Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics, edited by Mohamed Henini</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>