The Resource Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Bernard Helffer, Francis Nier
Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Bernard Helffer, Francis Nier
Resource Information
The item Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Bernard Helffer, Francis Nier represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Bernard Helffer, Francis Nier represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 1 library branch.
- Summary
- There has recently been a renewal of interest in Fokker-Planck operators, motivated by problems in statistical physics, in kinetic equations and differential geometry. Compared to more standard problems in the spectral theory of partial differential operators, those operators are not self-adjoint and only hypoelliptic. The aim of the analysis is to give, as generally as possible, an accurate qualitative and quantitative description of the exponential return to the thermodynamical equilibrium. While exploring and improving recent results in this direction this volume proposes a review of known techniques on: the hypoellipticity of polynomial of vector fields and its global counterpart; the global Weyl-Hörmander pseudo-differential calculus, the spectral theory of non-self-adjoint operators, the semi-classical analysis of Schrödinger-type operators, the Witten complexes and the Morse inequalities
- Language
- eng
- Extent
- 1 online resource (x, 209 pages)
- Contents
-
- Kohn's Proof of the Hypoellipticity of the Hörmander Operators
- Compactness Criteria for the Resolvent of Schrödinger Operators
- Global Pseudo-differential Calculus
- Analysis of some Fokker-Planck Operator
- Return to Equillibrium for the Fokker-Planck Operator
- Hypoellipticity and Nilpotent Groups
- Maximal Hypoellipticity for Polynomial of Vector Fields and Spectral Byproducts
- On Fokker-Planck Operators and Nilpotent Techniques
- Maximal Microhypoellipticity for Systems and Applications to Witten Laplacians
- Spectral Properties of the Witten-Laplacians in Connection with Poincaré Inequalities for Laplace Integrals
- Semi-classical Analysis for the Schrödinger Operator: Harmonic Approximation
- Decay of Eigenfunctions and Application to the Splitting
- Semi-classical Analysis and Witten Laplacians: Morse Inequalities
- Semi-classical Analysis and Witten Laplacians: Tunneling Effects
- Accurate Asymptotics for the Exponentially Small Eigenvalues of the Witten Laplacian
- Application to the Fokker-Planck Equation
- Epilogue
- Index
- Isbn
- 9783540315537
- Label
- Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians
- Title
- Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians
- Statement of responsibility
- Bernard Helffer, Francis Nier
- Subject
-
- Hypoelliptic operators
- Hypoelliptic operators
- Hypoelliptic operators
- Hypoelliptic operators
- Laplace-operatoren
- Mathematical Theory
- Mathematics
- Operatoren
- Opérateur de Schrödinger
- Opérateur hypoelliptique
- Opérateurs hypoelliptiques
- Physical Sciences & Mathematics
- Spectraaltheorie
- Spectral theory (Mathematics)
- Spectral theory (Mathematics)
- Spectral theory (Mathematics)
- Spectral theory (Mathematics)
- Spectre (Mathématiques)
- Théorie spectrale
- Équation différentielle partielle
- Calculus
- Language
- eng
- Summary
- There has recently been a renewal of interest in Fokker-Planck operators, motivated by problems in statistical physics, in kinetic equations and differential geometry. Compared to more standard problems in the spectral theory of partial differential operators, those operators are not self-adjoint and only hypoelliptic. The aim of the analysis is to give, as generally as possible, an accurate qualitative and quantitative description of the exponential return to the thermodynamical equilibrium. While exploring and improving recent results in this direction this volume proposes a review of known techniques on: the hypoellipticity of polynomial of vector fields and its global counterpart; the global Weyl-Hörmander pseudo-differential calculus, the spectral theory of non-self-adjoint operators, the semi-classical analysis of Schrödinger-type operators, the Witten complexes and the Morse inequalities
- Cataloging source
- GW5XE
- http://library.link/vocab/creatorName
- Helffer, Bernard
- Dewey number
-
- 510 s
- 515/.7242
- Illustrations
- illustrations
- Index
- index present
- LC call number
- QA3
- LC item number
- .L28 no. 1862
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- http://library.link/vocab/relatedWorkOrContributorName
- Nier, Francis
- Series statement
- Lecture notes in mathematics,
- Series volume
- 1862
- http://library.link/vocab/subjectName
-
- Hypoelliptic operators
- Spectral theory (Mathematics)
- Opérateurs hypoelliptiques
- Spectre (Mathématiques)
- Spectral theory (Mathematics)
- Hypoelliptic operators
- Hypoelliptic operators
- Spectral theory (Mathematics)
- Operatoren
- Laplace-operatoren
- Spectraaltheorie
- Mathematical Theory
- Calculus
- Mathematics
- Physical Sciences & Mathematics
- Opérateur hypoelliptique
- Théorie spectrale
- Équation différentielle partielle
- Opérateur de Schrödinger
- Label
- Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Bernard Helffer, Francis Nier
- Bibliography note
- Includes bibliographical references (pages 195-203) and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Kohn's Proof of the Hypoellipticity of the Hörmander Operators -- Compactness Criteria for the Resolvent of Schrödinger Operators -- Global Pseudo-differential Calculus -- Analysis of some Fokker-Planck Operator -- Return to Equillibrium for the Fokker-Planck Operator -- Hypoellipticity and Nilpotent Groups -- Maximal Hypoellipticity for Polynomial of Vector Fields and Spectral Byproducts -- On Fokker-Planck Operators and Nilpotent Techniques -- Maximal Microhypoellipticity for Systems and Applications to Witten Laplacians -- Spectral Properties of the Witten-Laplacians in Connection with Poincaré Inequalities for Laplace Integrals -- Semi-classical Analysis for the Schrödinger Operator: Harmonic Approximation -- Decay of Eigenfunctions and Application to the Splitting -- Semi-classical Analysis and Witten Laplacians: Morse Inequalities -- Semi-classical Analysis and Witten Laplacians: Tunneling Effects -- Accurate Asymptotics for the Exponentially Small Eigenvalues of the Witten Laplacian -- Application to the Fokker-Planck Equation -- Epilogue -- Index
- Control code
- 262680701
- Dimensions
- unknown
- Extent
- 1 online resource (x, 209 pages)
- Form of item
- online
- Isbn
- 9783540315537
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other control number
- 10.1007/b104762
- Other physical details
- illustrations.
- http://library.link/vocab/ext/overdrive/overdriveId
- 978-3-540-24200-0
- Specific material designation
- remote
- System control number
- (OCoLC)262680701
- Label
- Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Bernard Helffer, Francis Nier
- Bibliography note
- Includes bibliographical references (pages 195-203) and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Kohn's Proof of the Hypoellipticity of the Hörmander Operators -- Compactness Criteria for the Resolvent of Schrödinger Operators -- Global Pseudo-differential Calculus -- Analysis of some Fokker-Planck Operator -- Return to Equillibrium for the Fokker-Planck Operator -- Hypoellipticity and Nilpotent Groups -- Maximal Hypoellipticity for Polynomial of Vector Fields and Spectral Byproducts -- On Fokker-Planck Operators and Nilpotent Techniques -- Maximal Microhypoellipticity for Systems and Applications to Witten Laplacians -- Spectral Properties of the Witten-Laplacians in Connection with Poincaré Inequalities for Laplace Integrals -- Semi-classical Analysis for the Schrödinger Operator: Harmonic Approximation -- Decay of Eigenfunctions and Application to the Splitting -- Semi-classical Analysis and Witten Laplacians: Morse Inequalities -- Semi-classical Analysis and Witten Laplacians: Tunneling Effects -- Accurate Asymptotics for the Exponentially Small Eigenvalues of the Witten Laplacian -- Application to the Fokker-Planck Equation -- Epilogue -- Index
- Control code
- 262680701
- Dimensions
- unknown
- Extent
- 1 online resource (x, 209 pages)
- Form of item
- online
- Isbn
- 9783540315537
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other control number
- 10.1007/b104762
- Other physical details
- illustrations.
- http://library.link/vocab/ext/overdrive/overdriveId
- 978-3-540-24200-0
- Specific material designation
- remote
- System control number
- (OCoLC)262680701
Subject
- Hypoelliptic operators
- Hypoelliptic operators
- Hypoelliptic operators
- Hypoelliptic operators
- Laplace-operatoren
- Mathematical Theory
- Mathematics
- Operatoren
- Opérateur de Schrödinger
- Opérateur hypoelliptique
- Opérateurs hypoelliptiques
- Physical Sciences & Mathematics
- Spectraaltheorie
- Spectral theory (Mathematics)
- Spectral theory (Mathematics)
- Spectral theory (Mathematics)
- Spectral theory (Mathematics)
- Spectre (Mathématiques)
- Théorie spectrale
- Équation différentielle partielle
- Calculus
Member of
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Hypoelliptic-estimates-and-spectral-theory-for/rw7eTB9KTyE/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Hypoelliptic-estimates-and-spectral-theory-for/rw7eTB9KTyE/">Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Bernard Helffer, Francis Nier</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Bernard Helffer, Francis Nier
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Hypoelliptic-estimates-and-spectral-theory-for/rw7eTB9KTyE/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Hypoelliptic-estimates-and-spectral-theory-for/rw7eTB9KTyE/">Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Bernard Helffer, Francis Nier</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>