The Resource Integral closure of ideals, rings, and modules, Craig Huneke, Irena Swanson
Integral closure of ideals, rings, and modules, Craig Huneke, Irena Swanson
Resource Information
The item Integral closure of ideals, rings, and modules, Craig Huneke, Irena Swanson represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Integral closure of ideals, rings, and modules, Craig Huneke, Irena Swanson represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 1 library branch.
- Extent
- xiv, 431 pages
- Contents
-
- 1.2
- 5.5
- Defining equations of Rees algebras
- 104
- 5.6
- Blowing up
- 108
- 6
- Valuations
- 113
- 6.1
- Integral closure via reductions
- Valuations
- 113
- 6.2
- Value groups and valuation rings
- 115
- 6.3
- Existence of valuation rings
- 117
- 6.4
- More properties of valuation rings
- 5
- 119
- 6.5
- Valuation rings and completion
- 121
- 6.6
- Some invariants
- 124
- 6.7
- Examples of valuations
- 130
- 1.3
- 6.8
- Valuations and the integral closure of ideals
- 133
- 6.9
- The asymptotic Samuel function
- 138
- 7
- Derivations
- 143
- 7.1
- Integral closure of an ideal is an ideal
- Analytic approach
- 143
- 7.2
- Derivations and differentials
- 147
- 8
- Reductions
- 150
- 8.1
- Basic properties and examples
- 6
- 150
- 8.2
- Connections with Rees algebras
- 154
- 8.3
- Minimal reductions
- 155
- 8.4
- Reducing to infinite residue fields
- 159
- 1.4
- 8.5
- Superficial elements
- 160
- 8.6
- Superficial sequences and reductions
- 165
- 8.7
- Non-local rings
- 169
- 8.8
- Monomial ideals
- Sally's theorem on extensions
- 171
- 9
- Analytically unramified rings
- 177
- 9.1
- Rees's characterization
- 178
- 9.2
- Module-finite integral closures
- 9
- 180
- 9.3
- Divisorial valuations
- 182
- 10
- Rees valuations
- 187
- 10.1
- Uniqueness of Rees valuations
- 187
- 1.5
- 10.2
- A construction of Rees valuations
- 191
- 10.4
- Properties of Rees valuations
- 201
- 10.5
- Rational powers of ideals
- 205
- 11
- Table of basic properties
- Integral closure of rings
- Multiplicity and integral closure
- 212
- 11.1
- Hilbert-Samuel polynomials
- 212
- 11.2
- Multiplicity
- 217
- 11.3
- Rees's theorem
- 13
- 222
- 11.4
- Equimultiple families of ideals
- 225
- 12
- The conductor
- 234
- 12.1
- A classical formula
- 235
- 1.6
- 12.2
- One-dimensional rings
- 235
- 12.3
- The Lipman-Sathaye theorem
- 237
- 13
- The Briancon-Skoda Theorem
- 244
- 13.1
- How integral closure arises
- Tight closure
- 245
- 13.2
- Briancon-Skoda via tight closure
- 248
- 13.3
- The Lipman-Sathaye version
- 250
- 13.4
- General version
- 14
- 253
- 14
- Two-dimensional regular local rings
- 257
- 14.1
- Full ideals
- 258
- 14.2
- Quadratic transformations
- 263
- 1.7
- 14.3
- The transform of an ideal
- 266
- 14.4
- Zariski's theorems
- 268
- 14.5
- A formula of Hoskin and Deligne
- 274
- 14.6
- Dedekind-Mertens formula
- Simple integrally closed ideals
- 277
- 15
- Computing integral closure
- 281
- 15.1
- Method of Stolzenberg
- 282
- 15.2
- Some computations
- 17
- 286
- 15.3
- General algorithms
- 292
- 15.4
- Monomial ideals
- 295
- 16
- Integral dependence of modules
- 302
- 2
- 16.2
- Using symmetric algebras
- 304
- 16.3
- Using exterior algebras
- 307
- 16.4
- Properties of integral closure of modules
- 309
- 16.5
- Integral closure of rings
- Buchsbaum-Rim multiplicity
- 313
- 16.6
- Height sensitivity of Koszul complexes
- 319
- 16.7
- Absolute integral closures
- 321
- 16.8
- Complexes acyclic up to integral closure
- ix
- 23
- 325
- 17
- Joint reductions
- 331
- 17.1
- Definition of joint reductions
- 331
- 17.2
- Superficial elements
- 333
- 2.2
- 17.3
- Existence of joint reductions
- 335
- 17.4
- Mixed multiplicities
- 338
- 17.5
- More manipulations of mixed multiplicities
- 344
- 17.6
- Lying-Over, Incomparability, Going-Up, Going-Down
- Converse of Rees's multiplicity theorem
- 348
- 17.7
- Minkowski inequality
- 350
- 17.8
- The Rees-Sally formulation and the core
- 353
- 18
- Adjoints of ideals
- 30
- 360
- 18.1
- Basic facts about adjoints
- 360
- 18.2
- Adjoints and the Briancon-Skoda Theorem
- 362
- 18.3
- Background for computation of adjoints
- 364
- 2.3
- 18.4
- Adjoints of monomial ideals
- 366
- 18.5
- Adjoints in two-dimensional regular rings
- 369
- 18.6
- Mapping cones
- 372
- 18.7
- Integral closure and grading
- Analogs of adjoint ideals
- 375
- 19
- Normal homomorphisms
- 378
- 19.1
- Normal homomorphisms
- 379
- 19.2
- Locally analytically unramified rings
- 34
- 381
- 19.3
- Inductive limits of normal rings
- 383
- 19.4
- Base change and normal rings
- 384
- 19.5
- Integral closure and normal maps
- 388
- 2.4
- Appendix
- A Some background material
- 392
- A.1
- Some forms of Prime Avoidance
- 392
- A.2
- Caratheodory's theorem
- 392
- A.3
- Rings of homomorphisms of ideals
- Grading
- 393
- A.4
- Complexes
- 394
- A.5
- Macaulay representation of numbers
- 396
- Appendix B
- Height and dimension formulas
- 39
- 397
- B.1
- Going-Down, Lying-Over, flatness
- 397
- B.2
- Dimension and height inequalities
- 398
- B.3
- Dimension formula
- 399
- 1
- 3
- B.4
- Formal equidimensionality
- 401
- B.5
- Dimension Formula
- 403
- Separability
- 47
- 3.1
- Algebraic separability
- 47
- 3.2
- General separability
- 48
- 3.3
- What is integral closure of ideals?
- Relative algebraic closure
- 52
- 4
- Noetherian rings
- 56
- 4.1
- Principal ideals
- 56
- 4.2
- Normalization theorems
- 1
- 57
- 4.3
- Complete rings
- 60
- 4.4
- Jacobian ideals
- 63
- 4.5
- Serre's conditions
- 70
- 1.1
- 4.6
- Affine and Z-algebras
- 73
- 4.7
- Absolute integral closure
- 77
- 4.8
- Finite Lying-Over and height
- 79
- 4.9
- Basic properties
- Dimension one
- 83
- 4.10
- Krull domains
- 85
- 5
- Rees algebras
- 93
- 5.1
- Rees algebra constructions
- 2
- 93
- 5.2
- Integral closure of Rees algebras
- 95
- 5.3
- Integral closure of powers of an ideal
- 97
- 5.4
- Powers and formal equidimensionality
- 100
- Isbn
- 9780521688604
- Label
- Integral closure of ideals, rings, and modules
- Title
- Integral closure of ideals, rings, and modules
- Statement of responsibility
- Craig Huneke, Irena Swanson
- Language
- eng
- Cataloging source
- Z@L
- http://library.link/vocab/creatorName
- Huneke, C.
- Dewey number
- 512.44
- Government publication
- government publication of a state province territory dependency etc
- Illustrations
- illustrations
- Index
- index present
- Literary form
- non fiction
- Nature of contents
- bibliography
- http://library.link/vocab/relatedWorkOrContributorName
- Swanson, Irena
- Series statement
- London Mathematical Society lecture note series
- Series volume
- 336
- http://library.link/vocab/subjectName
-
- Integral closure
- Ideals (Algebra)
- Commutative rings
- Modules (Algebra)
- Label
- Integral closure of ideals, rings, and modules, Craig Huneke, Irena Swanson
- Bibliography note
- Includes bibliographical references (pages [405]-421) and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- 1.2
- 5.5
- Defining equations of Rees algebras
- 104
- 5.6
- Blowing up
- 108
- 6
- Valuations
- 113
- 6.1
- Integral closure via reductions
- Valuations
- 113
- 6.2
- Value groups and valuation rings
- 115
- 6.3
- Existence of valuation rings
- 117
- 6.4
- More properties of valuation rings
- 5
- 119
- 6.5
- Valuation rings and completion
- 121
- 6.6
- Some invariants
- 124
- 6.7
- Examples of valuations
- 130
- 1.3
- 6.8
- Valuations and the integral closure of ideals
- 133
- 6.9
- The asymptotic Samuel function
- 138
- 7
- Derivations
- 143
- 7.1
- Integral closure of an ideal is an ideal
- Analytic approach
- 143
- 7.2
- Derivations and differentials
- 147
- 8
- Reductions
- 150
- 8.1
- Basic properties and examples
- 6
- 150
- 8.2
- Connections with Rees algebras
- 154
- 8.3
- Minimal reductions
- 155
- 8.4
- Reducing to infinite residue fields
- 159
- 1.4
- 8.5
- Superficial elements
- 160
- 8.6
- Superficial sequences and reductions
- 165
- 8.7
- Non-local rings
- 169
- 8.8
- Monomial ideals
- Sally's theorem on extensions
- 171
- 9
- Analytically unramified rings
- 177
- 9.1
- Rees's characterization
- 178
- 9.2
- Module-finite integral closures
- 9
- 180
- 9.3
- Divisorial valuations
- 182
- 10
- Rees valuations
- 187
- 10.1
- Uniqueness of Rees valuations
- 187
- 1.5
- 10.2
- A construction of Rees valuations
- 191
- 10.4
- Properties of Rees valuations
- 201
- 10.5
- Rational powers of ideals
- 205
- 11
- Table of basic properties
- Integral closure of rings
- Multiplicity and integral closure
- 212
- 11.1
- Hilbert-Samuel polynomials
- 212
- 11.2
- Multiplicity
- 217
- 11.3
- Rees's theorem
- 13
- 222
- 11.4
- Equimultiple families of ideals
- 225
- 12
- The conductor
- 234
- 12.1
- A classical formula
- 235
- 1.6
- 12.2
- One-dimensional rings
- 235
- 12.3
- The Lipman-Sathaye theorem
- 237
- 13
- The Briancon-Skoda Theorem
- 244
- 13.1
- How integral closure arises
- Tight closure
- 245
- 13.2
- Briancon-Skoda via tight closure
- 248
- 13.3
- The Lipman-Sathaye version
- 250
- 13.4
- General version
- 14
- 253
- 14
- Two-dimensional regular local rings
- 257
- 14.1
- Full ideals
- 258
- 14.2
- Quadratic transformations
- 263
- 1.7
- 14.3
- The transform of an ideal
- 266
- 14.4
- Zariski's theorems
- 268
- 14.5
- A formula of Hoskin and Deligne
- 274
- 14.6
- Dedekind-Mertens formula
- Simple integrally closed ideals
- 277
- 15
- Computing integral closure
- 281
- 15.1
- Method of Stolzenberg
- 282
- 15.2
- Some computations
- 17
- 286
- 15.3
- General algorithms
- 292
- 15.4
- Monomial ideals
- 295
- 16
- Integral dependence of modules
- 302
- 2
- 16.2
- Using symmetric algebras
- 304
- 16.3
- Using exterior algebras
- 307
- 16.4
- Properties of integral closure of modules
- 309
- 16.5
- Integral closure of rings
- Buchsbaum-Rim multiplicity
- 313
- 16.6
- Height sensitivity of Koszul complexes
- 319
- 16.7
- Absolute integral closures
- 321
- 16.8
- Complexes acyclic up to integral closure
- ix
- 23
- 325
- 17
- Joint reductions
- 331
- 17.1
- Definition of joint reductions
- 331
- 17.2
- Superficial elements
- 333
- 2.2
- 17.3
- Existence of joint reductions
- 335
- 17.4
- Mixed multiplicities
- 338
- 17.5
- More manipulations of mixed multiplicities
- 344
- 17.6
- Lying-Over, Incomparability, Going-Up, Going-Down
- Converse of Rees's multiplicity theorem
- 348
- 17.7
- Minkowski inequality
- 350
- 17.8
- The Rees-Sally formulation and the core
- 353
- 18
- Adjoints of ideals
- 30
- 360
- 18.1
- Basic facts about adjoints
- 360
- 18.2
- Adjoints and the Briancon-Skoda Theorem
- 362
- 18.3
- Background for computation of adjoints
- 364
- 2.3
- 18.4
- Adjoints of monomial ideals
- 366
- 18.5
- Adjoints in two-dimensional regular rings
- 369
- 18.6
- Mapping cones
- 372
- 18.7
- Integral closure and grading
- Analogs of adjoint ideals
- 375
- 19
- Normal homomorphisms
- 378
- 19.1
- Normal homomorphisms
- 379
- 19.2
- Locally analytically unramified rings
- 34
- 381
- 19.3
- Inductive limits of normal rings
- 383
- 19.4
- Base change and normal rings
- 384
- 19.5
- Integral closure and normal maps
- 388
- 2.4
- Appendix
- A Some background material
- 392
- A.1
- Some forms of Prime Avoidance
- 392
- A.2
- Caratheodory's theorem
- 392
- A.3
- Rings of homomorphisms of ideals
- Grading
- 393
- A.4
- Complexes
- 394
- A.5
- Macaulay representation of numbers
- 396
- Appendix B
- Height and dimension formulas
- 39
- 397
- B.1
- Going-Down, Lying-Over, flatness
- 397
- B.2
- Dimension and height inequalities
- 398
- B.3
- Dimension formula
- 399
- 1
- 3
- B.4
- Formal equidimensionality
- 401
- B.5
- Dimension Formula
- 403
- Separability
- 47
- 3.1
- Algebraic separability
- 47
- 3.2
- General separability
- 48
- 3.3
- What is integral closure of ideals?
- Relative algebraic closure
- 52
- 4
- Noetherian rings
- 56
- 4.1
- Principal ideals
- 56
- 4.2
- Normalization theorems
- 1
- 57
- 4.3
- Complete rings
- 60
- 4.4
- Jacobian ideals
- 63
- 4.5
- Serre's conditions
- 70
- 1.1
- 4.6
- Affine and Z-algebras
- 73
- 4.7
- Absolute integral closure
- 77
- 4.8
- Finite Lying-Over and height
- 79
- 4.9
- Basic properties
- Dimension one
- 83
- 4.10
- Krull domains
- 85
- 5
- Rees algebras
- 93
- 5.1
- Rees algebra constructions
- 2
- 93
- 5.2
- Integral closure of Rees algebras
- 95
- 5.3
- Integral closure of powers of an ideal
- 97
- 5.4
- Powers and formal equidimensionality
- 100
- Control code
- 73458763
- Dimensions
- 23 cm
- Extent
- xiv, 431 pages
- Isbn
- 9780521688604
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other control number
- 9780521688604
- Other physical details
- illustrations
- System control number
- (OCoLC)73458763
- Label
- Integral closure of ideals, rings, and modules, Craig Huneke, Irena Swanson
- Bibliography note
- Includes bibliographical references (pages [405]-421) and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- 1.2
- 5.5
- Defining equations of Rees algebras
- 104
- 5.6
- Blowing up
- 108
- 6
- Valuations
- 113
- 6.1
- Integral closure via reductions
- Valuations
- 113
- 6.2
- Value groups and valuation rings
- 115
- 6.3
- Existence of valuation rings
- 117
- 6.4
- More properties of valuation rings
- 5
- 119
- 6.5
- Valuation rings and completion
- 121
- 6.6
- Some invariants
- 124
- 6.7
- Examples of valuations
- 130
- 1.3
- 6.8
- Valuations and the integral closure of ideals
- 133
- 6.9
- The asymptotic Samuel function
- 138
- 7
- Derivations
- 143
- 7.1
- Integral closure of an ideal is an ideal
- Analytic approach
- 143
- 7.2
- Derivations and differentials
- 147
- 8
- Reductions
- 150
- 8.1
- Basic properties and examples
- 6
- 150
- 8.2
- Connections with Rees algebras
- 154
- 8.3
- Minimal reductions
- 155
- 8.4
- Reducing to infinite residue fields
- 159
- 1.4
- 8.5
- Superficial elements
- 160
- 8.6
- Superficial sequences and reductions
- 165
- 8.7
- Non-local rings
- 169
- 8.8
- Monomial ideals
- Sally's theorem on extensions
- 171
- 9
- Analytically unramified rings
- 177
- 9.1
- Rees's characterization
- 178
- 9.2
- Module-finite integral closures
- 9
- 180
- 9.3
- Divisorial valuations
- 182
- 10
- Rees valuations
- 187
- 10.1
- Uniqueness of Rees valuations
- 187
- 1.5
- 10.2
- A construction of Rees valuations
- 191
- 10.4
- Properties of Rees valuations
- 201
- 10.5
- Rational powers of ideals
- 205
- 11
- Table of basic properties
- Integral closure of rings
- Multiplicity and integral closure
- 212
- 11.1
- Hilbert-Samuel polynomials
- 212
- 11.2
- Multiplicity
- 217
- 11.3
- Rees's theorem
- 13
- 222
- 11.4
- Equimultiple families of ideals
- 225
- 12
- The conductor
- 234
- 12.1
- A classical formula
- 235
- 1.6
- 12.2
- One-dimensional rings
- 235
- 12.3
- The Lipman-Sathaye theorem
- 237
- 13
- The Briancon-Skoda Theorem
- 244
- 13.1
- How integral closure arises
- Tight closure
- 245
- 13.2
- Briancon-Skoda via tight closure
- 248
- 13.3
- The Lipman-Sathaye version
- 250
- 13.4
- General version
- 14
- 253
- 14
- Two-dimensional regular local rings
- 257
- 14.1
- Full ideals
- 258
- 14.2
- Quadratic transformations
- 263
- 1.7
- 14.3
- The transform of an ideal
- 266
- 14.4
- Zariski's theorems
- 268
- 14.5
- A formula of Hoskin and Deligne
- 274
- 14.6
- Dedekind-Mertens formula
- Simple integrally closed ideals
- 277
- 15
- Computing integral closure
- 281
- 15.1
- Method of Stolzenberg
- 282
- 15.2
- Some computations
- 17
- 286
- 15.3
- General algorithms
- 292
- 15.4
- Monomial ideals
- 295
- 16
- Integral dependence of modules
- 302
- 2
- 16.2
- Using symmetric algebras
- 304
- 16.3
- Using exterior algebras
- 307
- 16.4
- Properties of integral closure of modules
- 309
- 16.5
- Integral closure of rings
- Buchsbaum-Rim multiplicity
- 313
- 16.6
- Height sensitivity of Koszul complexes
- 319
- 16.7
- Absolute integral closures
- 321
- 16.8
- Complexes acyclic up to integral closure
- ix
- 23
- 325
- 17
- Joint reductions
- 331
- 17.1
- Definition of joint reductions
- 331
- 17.2
- Superficial elements
- 333
- 2.2
- 17.3
- Existence of joint reductions
- 335
- 17.4
- Mixed multiplicities
- 338
- 17.5
- More manipulations of mixed multiplicities
- 344
- 17.6
- Lying-Over, Incomparability, Going-Up, Going-Down
- Converse of Rees's multiplicity theorem
- 348
- 17.7
- Minkowski inequality
- 350
- 17.8
- The Rees-Sally formulation and the core
- 353
- 18
- Adjoints of ideals
- 30
- 360
- 18.1
- Basic facts about adjoints
- 360
- 18.2
- Adjoints and the Briancon-Skoda Theorem
- 362
- 18.3
- Background for computation of adjoints
- 364
- 2.3
- 18.4
- Adjoints of monomial ideals
- 366
- 18.5
- Adjoints in two-dimensional regular rings
- 369
- 18.6
- Mapping cones
- 372
- 18.7
- Integral closure and grading
- Analogs of adjoint ideals
- 375
- 19
- Normal homomorphisms
- 378
- 19.1
- Normal homomorphisms
- 379
- 19.2
- Locally analytically unramified rings
- 34
- 381
- 19.3
- Inductive limits of normal rings
- 383
- 19.4
- Base change and normal rings
- 384
- 19.5
- Integral closure and normal maps
- 388
- 2.4
- Appendix
- A Some background material
- 392
- A.1
- Some forms of Prime Avoidance
- 392
- A.2
- Caratheodory's theorem
- 392
- A.3
- Rings of homomorphisms of ideals
- Grading
- 393
- A.4
- Complexes
- 394
- A.5
- Macaulay representation of numbers
- 396
- Appendix B
- Height and dimension formulas
- 39
- 397
- B.1
- Going-Down, Lying-Over, flatness
- 397
- B.2
- Dimension and height inequalities
- 398
- B.3
- Dimension formula
- 399
- 1
- 3
- B.4
- Formal equidimensionality
- 401
- B.5
- Dimension Formula
- 403
- Separability
- 47
- 3.1
- Algebraic separability
- 47
- 3.2
- General separability
- 48
- 3.3
- What is integral closure of ideals?
- Relative algebraic closure
- 52
- 4
- Noetherian rings
- 56
- 4.1
- Principal ideals
- 56
- 4.2
- Normalization theorems
- 1
- 57
- 4.3
- Complete rings
- 60
- 4.4
- Jacobian ideals
- 63
- 4.5
- Serre's conditions
- 70
- 1.1
- 4.6
- Affine and Z-algebras
- 73
- 4.7
- Absolute integral closure
- 77
- 4.8
- Finite Lying-Over and height
- 79
- 4.9
- Basic properties
- Dimension one
- 83
- 4.10
- Krull domains
- 85
- 5
- Rees algebras
- 93
- 5.1
- Rees algebra constructions
- 2
- 93
- 5.2
- Integral closure of Rees algebras
- 95
- 5.3
- Integral closure of powers of an ideal
- 97
- 5.4
- Powers and formal equidimensionality
- 100
- Control code
- 73458763
- Dimensions
- 23 cm
- Extent
- xiv, 431 pages
- Isbn
- 9780521688604
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other control number
- 9780521688604
- Other physical details
- illustrations
- System control number
- (OCoLC)73458763
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Integral-closure-of-ideals-rings-and-modules/0tUszCn7pgk/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Integral-closure-of-ideals-rings-and-modules/0tUszCn7pgk/">Integral closure of ideals, rings, and modules, Craig Huneke, Irena Swanson</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Integral closure of ideals, rings, and modules, Craig Huneke, Irena Swanson
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Integral-closure-of-ideals-rings-and-modules/0tUszCn7pgk/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Integral-closure-of-ideals-rings-and-modules/0tUszCn7pgk/">Integral closure of ideals, rings, and modules, Craig Huneke, Irena Swanson</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>