The Resource Introduction to the mathematical physics of nonlinear waves, Minoru Fujimoto
Introduction to the mathematical physics of nonlinear waves, Minoru Fujimoto
Resource Information
The item Introduction to the mathematical physics of nonlinear waves, Minoru Fujimoto represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Introduction to the mathematical physics of nonlinear waves, Minoru Fujimoto represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 1 library branch.
- Summary
- Nonlinear physics is a well-established discipline in physics today, and this book offers a comprehensive account of the basic soliton theory and its applications. Although primarily mathematical, the theory for nonlinear phenomena in practical environments needs to be understood at upper undergraduate level, with particular attention given to the presence of media where nonlinearity takes place. This book addresses mathematical theories, but also suggests possible theoretical innovations for many issues, providing a stimulating reference for both students and researchers
- Language
- eng
- Extent
- 1 online resource (156 pages)
- Note
-
- "Version: 20140301"--Title page verso
- "A Morgan & Claypool publication as part of IOP Concise Physics"--Title page verso
- Title from PDF title page (viewed on March 28, 2014)
- Contents
-
- Nonlinearity in classical mechanics -- A pendulum -- Vibration by a nonlinear spring force -- A jumping rope -- Hyperbolic and elliptic functions -- Variation principle -- Buckling deformation of a rod
- Wave propagation, singularities and boundaries -- Elastic waves along a linear string of infinite length -- Microwave transmission -- Schrödinger's equation -- Scattering by the potential V(x) =V [subscript]o sech [superscript]2 x -- Two-dimensional waves in inhomogeneous medium -- Sound propagation in air
- Solitons and adiabatic potentials -- The Korteweg-deVries equation -- Steady solutions of the Korteweg-deVries equation -- Developing equations of nonlinear vector waves -- Bargmann's theorem -- Riccati's theorem -- Properties of the Eckart potential in the soliton field -- Zabusky-Kruskal's computational analysis
- Structural phase transitions -- Initial uncertainties and transition anomalies -- Dynamical theory of collective motion -- Pseudopotential and sine-Gordon equation
- Nonlinear waves -- Elemental waves -- Matrix formulation for nonlinear development -- Heat dissipation of wave motion -- Born-Huang transitions in crystals -- Symmetry of media for the Korteweg-deVries equation -- Soliton description
- Scattering theory -- One-component waves -- Two-component scatterings
- Method of inverse scatterings -- Coherent wave packets and Marchenko's equation -- Reflectionless multi-soliton potentials -- Two-component systems
- Quasi-static soliton states -- Developing the Korteweg-deVries equation -- Multi-soliton potentials in unsteady states -- The modified Korteweg-deVries equation, part 2 -- Thermodynamic instability and Breezer potentials -- The third-order Schrödinger equation
- The Bäcklund transformation and sine-Gordon equations -- The Klein-Gordon equation -- The Bäcklund transformation -- The sine-Gordon equation -- Numerical analysis of the sine-Gordon equation -- Inverse scatterings and the Bäcklund transformation -- Scatterings by a pseudopotential
- Miscellaneous applications -- Surface waves -- Vortex motion in fluid media -- Plasma oscillation -- Laser light transmission through absorbing media -- Periodic lattices
- Isbn
- 9781627052764
- Label
- Introduction to the mathematical physics of nonlinear waves
- Title
- Introduction to the mathematical physics of nonlinear waves
- Statement of responsibility
- Minoru Fujimoto
- Language
- eng
- Summary
- Nonlinear physics is a well-established discipline in physics today, and this book offers a comprehensive account of the basic soliton theory and its applications. Although primarily mathematical, the theory for nonlinear phenomena in practical environments needs to be understood at upper undergraduate level, with particular attention given to the presence of media where nonlinearity takes place. This book addresses mathematical theories, but also suggests possible theoretical innovations for many issues, providing a stimulating reference for both students and researchers
- Cataloging source
- CaBNVSL
- http://library.link/vocab/creatorName
- Fujimoto, Minoru
- Dewey number
- 530.155355
- Illustrations
- illustrations
- Index
- no index present
- LC call number
- QA927
- LC item number
- .F845 2014eb
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- http://library.link/vocab/relatedWorkOrContributorName
-
- Morgan & Claypool Publishers
- Institute of Physics (Great Britain)
- Series statement
- IOP concise physics,
- http://library.link/vocab/subjectName
-
- Nonlinear waves
- Nonlinear wave equations
- Mathematical physics
- Mathematical Physics
- SCIENCE
- Mathematical physics
- Nonlinear wave equations
- Nonlinear waves
- Target audience
- adult
- Label
- Introduction to the mathematical physics of nonlinear waves, Minoru Fujimoto
- Note
-
- "Version: 20140301"--Title page verso
- "A Morgan & Claypool publication as part of IOP Concise Physics"--Title page verso
- Title from PDF title page (viewed on March 28, 2014)
- Bibliography note
- Includes bibliographical references
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- black and white
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Nonlinearity in classical mechanics -- A pendulum -- Vibration by a nonlinear spring force -- A jumping rope -- Hyperbolic and elliptic functions -- Variation principle -- Buckling deformation of a rod
- Wave propagation, singularities and boundaries -- Elastic waves along a linear string of infinite length -- Microwave transmission -- Schrödinger's equation -- Scattering by the potential V(x) =V [subscript]o sech [superscript]2 x -- Two-dimensional waves in inhomogeneous medium -- Sound propagation in air
- Solitons and adiabatic potentials -- The Korteweg-deVries equation -- Steady solutions of the Korteweg-deVries equation -- Developing equations of nonlinear vector waves -- Bargmann's theorem -- Riccati's theorem -- Properties of the Eckart potential in the soliton field -- Zabusky-Kruskal's computational analysis
- Structural phase transitions -- Initial uncertainties and transition anomalies -- Dynamical theory of collective motion -- Pseudopotential and sine-Gordon equation
- Nonlinear waves -- Elemental waves -- Matrix formulation for nonlinear development -- Heat dissipation of wave motion -- Born-Huang transitions in crystals -- Symmetry of media for the Korteweg-deVries equation -- Soliton description
- Scattering theory -- One-component waves -- Two-component scatterings
- Method of inverse scatterings -- Coherent wave packets and Marchenko's equation -- Reflectionless multi-soliton potentials -- Two-component systems
- Quasi-static soliton states -- Developing the Korteweg-deVries equation -- Multi-soliton potentials in unsteady states -- The modified Korteweg-deVries equation, part 2 -- Thermodynamic instability and Breezer potentials -- The third-order Schrödinger equation
- The Bäcklund transformation and sine-Gordon equations -- The Klein-Gordon equation -- The Bäcklund transformation -- The sine-Gordon equation -- Numerical analysis of the sine-Gordon equation -- Inverse scatterings and the Bäcklund transformation -- Scatterings by a pseudopotential
- Miscellaneous applications -- Surface waves -- Vortex motion in fluid media -- Plasma oscillation -- Laser light transmission through absorbing media -- Periodic lattices
- Control code
- 875858859
- Dimensions
- unknown
- Extent
- 1 online resource (156 pages)
- File format
- multiple file formats
- Form of item
- online
- Isbn
- 9781627052764
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other control number
- 10.1088/978-1-627-05276-4
- Other physical details
- illustrations.
- Reformatting quality
- access
- Specific material designation
- remote
- System control number
- (OCoLC)875858859
- Label
- Introduction to the mathematical physics of nonlinear waves, Minoru Fujimoto
- Note
-
- "Version: 20140301"--Title page verso
- "A Morgan & Claypool publication as part of IOP Concise Physics"--Title page verso
- Title from PDF title page (viewed on March 28, 2014)
- Bibliography note
- Includes bibliographical references
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- black and white
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Nonlinearity in classical mechanics -- A pendulum -- Vibration by a nonlinear spring force -- A jumping rope -- Hyperbolic and elliptic functions -- Variation principle -- Buckling deformation of a rod
- Wave propagation, singularities and boundaries -- Elastic waves along a linear string of infinite length -- Microwave transmission -- Schrödinger's equation -- Scattering by the potential V(x) =V [subscript]o sech [superscript]2 x -- Two-dimensional waves in inhomogeneous medium -- Sound propagation in air
- Solitons and adiabatic potentials -- The Korteweg-deVries equation -- Steady solutions of the Korteweg-deVries equation -- Developing equations of nonlinear vector waves -- Bargmann's theorem -- Riccati's theorem -- Properties of the Eckart potential in the soliton field -- Zabusky-Kruskal's computational analysis
- Structural phase transitions -- Initial uncertainties and transition anomalies -- Dynamical theory of collective motion -- Pseudopotential and sine-Gordon equation
- Nonlinear waves -- Elemental waves -- Matrix formulation for nonlinear development -- Heat dissipation of wave motion -- Born-Huang transitions in crystals -- Symmetry of media for the Korteweg-deVries equation -- Soliton description
- Scattering theory -- One-component waves -- Two-component scatterings
- Method of inverse scatterings -- Coherent wave packets and Marchenko's equation -- Reflectionless multi-soliton potentials -- Two-component systems
- Quasi-static soliton states -- Developing the Korteweg-deVries equation -- Multi-soliton potentials in unsteady states -- The modified Korteweg-deVries equation, part 2 -- Thermodynamic instability and Breezer potentials -- The third-order Schrödinger equation
- The Bäcklund transformation and sine-Gordon equations -- The Klein-Gordon equation -- The Bäcklund transformation -- The sine-Gordon equation -- Numerical analysis of the sine-Gordon equation -- Inverse scatterings and the Bäcklund transformation -- Scatterings by a pseudopotential
- Miscellaneous applications -- Surface waves -- Vortex motion in fluid media -- Plasma oscillation -- Laser light transmission through absorbing media -- Periodic lattices
- Control code
- 875858859
- Dimensions
- unknown
- Extent
- 1 online resource (156 pages)
- File format
- multiple file formats
- Form of item
- online
- Isbn
- 9781627052764
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other control number
- 10.1088/978-1-627-05276-4
- Other physical details
- illustrations.
- Reformatting quality
- access
- Specific material designation
- remote
- System control number
- (OCoLC)875858859
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Introduction-to-the-mathematical-physics-of/H7MvxTYHWt8/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Introduction-to-the-mathematical-physics-of/H7MvxTYHWt8/">Introduction to the mathematical physics of nonlinear waves, Minoru Fujimoto</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Introduction to the mathematical physics of nonlinear waves, Minoru Fujimoto
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Introduction-to-the-mathematical-physics-of/H7MvxTYHWt8/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Introduction-to-the-mathematical-physics-of/H7MvxTYHWt8/">Introduction to the mathematical physics of nonlinear waves, Minoru Fujimoto</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>