The Resource Lattice-gas cellular automata and lattice Boltzmann models : an introduction, Dieter A. Wolf-Gladrow
Lattice-gas cellular automata and lattice Boltzmann models : an introduction, Dieter A. Wolf-Gladrow
Resource Information
The item Lattice-gas cellular automata and lattice Boltzmann models : an introduction, Dieter A. Wolf-Gladrow represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Lattice-gas cellular automata and lattice Boltzmann models : an introduction, Dieter A. Wolf-Gladrow represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 1 library branch.
- Summary
- Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5
- Language
- eng
- Extent
- 1 online resource (ix, 308 pages)
- Contents
-
- From the contents: Introduction: Preface; Overview
- The basic idea of lattice-gas cellular automata and lattice Boltzmann models. Cellular Automata: What are cellular automata?- A short history of cellular automata
- One-dimensional cellular automata
- Two-dimensional cellular automata
- Lattice-gas cellular automata: The HPP lattice-gas cellular automata
- The FHP lattice-gas cellular automata
- Lattice tensors and isotropy in the macroscopic limit
- Desperately seeking a lattice for simulations in three dimensions
- 5 FCHC
- The pair interaction (PI) lattice-gas cellular automata
- Multi-speed and thermal lattice-gas cellular automata
- Zanetti (staggered) invariants
- Lattice-gas cellular automata: What else? Some statistical mechanics: The Boltzmann equation
- Chapman-Enskog: From Boltzmann to Navier-Stokes
- The maximum entropy principle. Lattice Boltzmann Models: ... Appendix
- Isbn
- 9783540465867
- Label
- Lattice-gas cellular automata and lattice Boltzmann models : an introduction
- Title
- Lattice-gas cellular automata and lattice Boltzmann models
- Title remainder
- an introduction
- Statement of responsibility
- Dieter A. Wolf-Gladrow
- Subject
-
- Cellular automata
- Cellular automata
- Cellular automata
- Gaz réticulaires
- Gittermodell
- Lattice gas -- Mathematical models
- Lattice gas -- Mathematical models
- Lattice gas -- Mathematical models
- Maxwell-Boltzmann distribution law
- Maxwell-Boltzmann distribution law
- Maxwell-Boltzmann distribution law
- Maxwell-Boltzmann, Distribution de
- Nichtlineare partielle Differentialgleichung
- Numerisches Verfahren
- Réseaux cristallins
- Zellularer Automat
- Automates cellulaires
- Language
- eng
- Summary
- Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5
- Cataloging source
- COO
- http://library.link/vocab/creatorDate
- 1953-
- http://library.link/vocab/creatorName
- Wolf-Gladrow, Dieter A.
- Dewey number
-
- 510 s
- 511.3
- Illustrations
- illustrations
- Index
- index present
- Language note
- English
- LC call number
-
- QA3
- QA267.5.C45
- LC item number
- .L28 no. 1725
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- Series statement
- Lecture notes in mathematics,
- Series volume
- 1725
- http://library.link/vocab/subjectName
-
- Cellular automata
- Lattice gas
- Maxwell-Boltzmann distribution law
- Cellular automata
- Lattice gas
- Maxwell-Boltzmann distribution law
- Gittermodell
- Zellularer Automat
- Nichtlineare partielle Differentialgleichung
- Numerisches Verfahren
- Maxwell-Boltzmann, Distribution de
- Automates cellulaires
- Gaz réticulaires
- Réseaux cristallins
- Label
- Lattice-gas cellular automata and lattice Boltzmann models : an introduction, Dieter A. Wolf-Gladrow
- Bibliography note
- Includes bibliographical references (pages 275-308) and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- From the contents: Introduction: Preface; Overview -- The basic idea of lattice-gas cellular automata and lattice Boltzmann models. Cellular Automata: What are cellular automata?- A short history of cellular automata -- One-dimensional cellular automata -- Two-dimensional cellular automata -- Lattice-gas cellular automata: The HPP lattice-gas cellular automata -- The FHP lattice-gas cellular automata -- Lattice tensors and isotropy in the macroscopic limit -- Desperately seeking a lattice for simulations in three dimensions -- 5 FCHC -- The pair interaction (PI) lattice-gas cellular automata -- Multi-speed and thermal lattice-gas cellular automata -- Zanetti (staggered) invariants -- Lattice-gas cellular automata: What else? Some statistical mechanics: The Boltzmann equation -- Chapman-Enskog: From Boltzmann to Navier-Stokes -- The maximum entropy principle. Lattice Boltzmann Models: ... Appendix
- Control code
- 56338152
- Dimensions
- unknown
- Extent
- 1 online resource (ix, 308 pages)
- Form of item
- online
- Isbn
- 9783540465867
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other control number
- 10.1007/b72010.
- Other physical details
- illustrations.
- Specific material designation
- remote
- System control number
- (OCoLC)56338152
- Label
- Lattice-gas cellular automata and lattice Boltzmann models : an introduction, Dieter A. Wolf-Gladrow
- Bibliography note
- Includes bibliographical references (pages 275-308) and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- From the contents: Introduction: Preface; Overview -- The basic idea of lattice-gas cellular automata and lattice Boltzmann models. Cellular Automata: What are cellular automata?- A short history of cellular automata -- One-dimensional cellular automata -- Two-dimensional cellular automata -- Lattice-gas cellular automata: The HPP lattice-gas cellular automata -- The FHP lattice-gas cellular automata -- Lattice tensors and isotropy in the macroscopic limit -- Desperately seeking a lattice for simulations in three dimensions -- 5 FCHC -- The pair interaction (PI) lattice-gas cellular automata -- Multi-speed and thermal lattice-gas cellular automata -- Zanetti (staggered) invariants -- Lattice-gas cellular automata: What else? Some statistical mechanics: The Boltzmann equation -- Chapman-Enskog: From Boltzmann to Navier-Stokes -- The maximum entropy principle. Lattice Boltzmann Models: ... Appendix
- Control code
- 56338152
- Dimensions
- unknown
- Extent
- 1 online resource (ix, 308 pages)
- Form of item
- online
- Isbn
- 9783540465867
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other control number
- 10.1007/b72010.
- Other physical details
- illustrations.
- Specific material designation
- remote
- System control number
- (OCoLC)56338152
Subject
- Cellular automata
- Cellular automata
- Cellular automata
- Gaz réticulaires
- Gittermodell
- Lattice gas -- Mathematical models
- Lattice gas -- Mathematical models
- Lattice gas -- Mathematical models
- Maxwell-Boltzmann distribution law
- Maxwell-Boltzmann distribution law
- Maxwell-Boltzmann distribution law
- Maxwell-Boltzmann, Distribution de
- Nichtlineare partielle Differentialgleichung
- Numerisches Verfahren
- Réseaux cristallins
- Zellularer Automat
- Automates cellulaires
Member of
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Lattice-gas-cellular-automata-and-lattice/f92S9ls4KY4/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Lattice-gas-cellular-automata-and-lattice/f92S9ls4KY4/">Lattice-gas cellular automata and lattice Boltzmann models : an introduction, Dieter A. Wolf-Gladrow</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Lattice-gas cellular automata and lattice Boltzmann models : an introduction, Dieter A. Wolf-Gladrow
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Lattice-gas-cellular-automata-and-lattice/f92S9ls4KY4/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Lattice-gas-cellular-automata-and-lattice/f92S9ls4KY4/">Lattice-gas cellular automata and lattice Boltzmann models : an introduction, Dieter A. Wolf-Gladrow</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>