The Resource Lie theory : harmonic analysis on symmetric spaces, general Plancherel theorems, Jean-Philippe Anker, Bent Orsted, editors
Lie theory : harmonic analysis on symmetric spaces, general Plancherel theorems, Jean-Philippe Anker, Bent Orsted, editors
Resource Information
The item Lie theory : harmonic analysis on symmetric spaces, general Plancherel theorems, Jean-Philippe Anker, Bent Orsted, editors represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Lie theory : harmonic analysis on symmetric spaces, general Plancherel theorems, Jean-Philippe Anker, Bent Orsted, editors represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 1 library branch.
- Summary
- "Harmonic Analysis on Symmetric Spaces - General Plancherel Theorems presents extensive surveys by E.P. van den Ban, H. Schlichtkrull, and P. Delorme of the spectacular progress over the past decade in deriving the Plancherel theorem on reductive symmetric spaces." "Well suited for both graduate students and researchers in semisimple Lie theory and neighboring fields, and possibly even mathematical cosmology, Harmonic Analysis on Symmetric Spaces - General Plancherel Theorems provides a broad, clearly focused examination of semisimple Lie groups and their integral importance and applications to research in many branches of mathematics and physics. Knowledge of basic representation theory of Lie groups as well as familiarity with semisimple Lie groups, symmetric spaces, and parabolic subgroups is required."--Jacket
- Language
- eng
- Extent
- 1 online resource (viii, 175 pages)
- Contents
-
- The Plancherel theorem for a reductive symmetric space / Erik P. van den Ban
- The Paley-Wiener theorem for a reductive symmetric space / Henrik Schlichtkrull
- The Plancherel formula on reductive symmetric spaces from the point of view of the Schwartz space / Partrick Delorme
- Isbn
- 9786610462360
- Label
- Lie theory : harmonic analysis on symmetric spaces, general Plancherel theorems
- Title
- Lie theory
- Title remainder
- harmonic analysis on symmetric spaces, general Plancherel theorems
- Statement of responsibility
- Jean-Philippe Anker, Bent Orsted, editors
- Subject
-
- Analyse harmonique
- Analyse harmonique
- Análise harmônica
- Espaces symétriques
- Espaces symétriques
- Espaces vectoriels topologiques
- Espaces vectoriels topologiques
- Harmonic analysis
- Harmonic analysis
- Harmonic analysis
- Harmonic analysis
- Harmonische Analyse -- Lie-Gruppe | Topologischer Vektorraum | Symmetrischer Raum
- Harmonische analyse
- Harmonische analyse
- Lie groups
- Lie groups
- Lie groups
- Lie groups
- Lie, Groupes de
- Lie, Groupes de
- Lie-Gruppe -- Harmonische Analyse | Topologischer Vektorraum | Symmetrischer Raum
- Lie-groepen
- Lie-groepen
- Linear topological spaces
- Linear topological spaces
- Linear topological spaces
- Linear topological spaces
- MATHEMATICS -- Algebra | Intermediate
- Symmetric spaces
- Symmetric spaces
- Symmetric spaces
- Symmetric spaces
- Symmetrische ruimten
- Symmetrische ruimten
- Symmetrischer Raum -- Topologischer Vektorraum | Harmonische Analyse | Lie-Gruppe
- Topologischer Vektorraum -- Harmonische Analyse | Lie-Gruppe | Symmetrischer Raum
- Language
- eng
- Summary
- "Harmonic Analysis on Symmetric Spaces - General Plancherel Theorems presents extensive surveys by E.P. van den Ban, H. Schlichtkrull, and P. Delorme of the spectacular progress over the past decade in deriving the Plancherel theorem on reductive symmetric spaces." "Well suited for both graduate students and researchers in semisimple Lie theory and neighboring fields, and possibly even mathematical cosmology, Harmonic Analysis on Symmetric Spaces - General Plancherel Theorems provides a broad, clearly focused examination of semisimple Lie groups and their integral importance and applications to research in many branches of mathematics and physics. Knowledge of basic representation theory of Lie groups as well as familiarity with semisimple Lie groups, symmetric spaces, and parabolic subgroups is required."--Jacket
- Cataloging source
- COO
- Dewey number
- 512/.482
- Illustrations
- illustrations
- Index
- no index present
- LC call number
- QA387
- LC item number
- .L538 2005
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- http://library.link/vocab/relatedWorkOrContributorName
-
- Anker, Jean-Philippe
- Orsted, Bent
- Series statement
- Progress in mathematics
- Series volume
- v. 230
- http://library.link/vocab/subjectName
-
- Lie groups
- Harmonic analysis
- Linear topological spaces
- Symmetric spaces
- Lie, Groupes de
- Analyse harmonique
- Espaces vectoriels topologiques
- Espaces symétriques
- MATHEMATICS
- Linear topological spaces
- Symmetric spaces
- Lie, Groupes de
- Analyse harmonique
- Espaces vectoriels topologiques
- Espaces symétriques
- Lie-groepen
- Harmonische analyse
- Symmetrische ruimten
- Lie groups
- Harmonic analysis
- Harmonic analysis
- Lie groups
- Linear topological spaces
- Symmetric spaces
- Lie-groepen
- Harmonische analyse
- Symmetrische ruimten
- Análise harmônica
- Lie-Gruppe
- Harmonische Analyse
- Topologischer Vektorraum
- Symmetrischer Raum
- Label
- Lie theory : harmonic analysis on symmetric spaces, general Plancherel theorems, Jean-Philippe Anker, Bent Orsted, editors
- Bibliography note
- Includes bibliographical references
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- The Plancherel theorem for a reductive symmetric space / Erik P. van den Ban -- The Paley-Wiener theorem for a reductive symmetric space / Henrik Schlichtkrull -- The Plancherel formula on reductive symmetric spaces from the point of view of the Schwartz space / Partrick Delorme
- Control code
- 71781779
- Dimensions
- unknown
- Extent
- 1 online resource (viii, 175 pages)
- Form of item
- online
- Isbn
- 9786610462360
- Lccn
- 2004062328
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other control number
- 10.1007/b138865
- Other physical details
- illustrations.
- http://library.link/vocab/ext/overdrive/overdriveId
- 978-0-8176-3777-4
- Specific material designation
- remote
- System control number
- (OCoLC)71781779
- Label
- Lie theory : harmonic analysis on symmetric spaces, general Plancherel theorems, Jean-Philippe Anker, Bent Orsted, editors
- Bibliography note
- Includes bibliographical references
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- The Plancherel theorem for a reductive symmetric space / Erik P. van den Ban -- The Paley-Wiener theorem for a reductive symmetric space / Henrik Schlichtkrull -- The Plancherel formula on reductive symmetric spaces from the point of view of the Schwartz space / Partrick Delorme
- Control code
- 71781779
- Dimensions
- unknown
- Extent
- 1 online resource (viii, 175 pages)
- Form of item
- online
- Isbn
- 9786610462360
- Lccn
- 2004062328
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other control number
- 10.1007/b138865
- Other physical details
- illustrations.
- http://library.link/vocab/ext/overdrive/overdriveId
- 978-0-8176-3777-4
- Specific material designation
- remote
- System control number
- (OCoLC)71781779
Subject
- Analyse harmonique
- Analyse harmonique
- Análise harmônica
- Espaces symétriques
- Espaces symétriques
- Espaces vectoriels topologiques
- Espaces vectoriels topologiques
- Harmonic analysis
- Harmonic analysis
- Harmonic analysis
- Harmonic analysis
- Harmonische Analyse -- Lie-Gruppe | Topologischer Vektorraum | Symmetrischer Raum
- Harmonische analyse
- Harmonische analyse
- Lie groups
- Lie groups
- Lie groups
- Lie groups
- Lie, Groupes de
- Lie, Groupes de
- Lie-Gruppe -- Harmonische Analyse | Topologischer Vektorraum | Symmetrischer Raum
- Lie-groepen
- Lie-groepen
- Linear topological spaces
- Linear topological spaces
- Linear topological spaces
- Linear topological spaces
- MATHEMATICS -- Algebra | Intermediate
- Symmetric spaces
- Symmetric spaces
- Symmetric spaces
- Symmetric spaces
- Symmetrische ruimten
- Symmetrische ruimten
- Symmetrischer Raum -- Topologischer Vektorraum | Harmonische Analyse | Lie-Gruppe
- Topologischer Vektorraum -- Harmonische Analyse | Lie-Gruppe | Symmetrischer Raum
Member of
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Lie-theory--harmonic-analysis-on-symmetric/IJapSB904Bo/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Lie-theory--harmonic-analysis-on-symmetric/IJapSB904Bo/">Lie theory : harmonic analysis on symmetric spaces, general Plancherel theorems, Jean-Philippe Anker, Bent Orsted, editors</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Lie theory : harmonic analysis on symmetric spaces, general Plancherel theorems, Jean-Philippe Anker, Bent Orsted, editors
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Lie-theory--harmonic-analysis-on-symmetric/IJapSB904Bo/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Lie-theory--harmonic-analysis-on-symmetric/IJapSB904Bo/">Lie theory : harmonic analysis on symmetric spaces, general Plancherel theorems, Jean-Philippe Anker, Bent Orsted, editors</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>