Coverart for item
The Resource Locally decodable codes and private information retrieval schemes, Sergey Yekhanin

Locally decodable codes and private information retrieval schemes, Sergey Yekhanin

Label
Locally decodable codes and private information retrieval schemes
Title
Locally decodable codes and private information retrieval schemes
Statement of responsibility
Sergey Yekhanin
Creator
Subject
Language
eng
Summary
Locally decodable codes (LDCs) are codes that simultaneously provide efficient random access retrieval and high noise resilience by allowing reliable reconstruction of an arbitrary bit of a message by looking at only a small number of randomly chosen codeword bits. Local decodability comes with a certain loss in terms of efficiency - specifically, locally decodable codes require longer codeword lengths than their classical counterparts. Private information retrieval (PIR) schemes are cryptographic protocols designed to safeguard the privacy of database users. They allow clients to retrieve records from public databases while completely hiding the identity of the retrieved records from database owners. In this book the author provides a fresh algebraic look at the theory of locally decodable codes and private information retrieval schemes, obtaining new families of each which have much better parameters than those of previously known constructions, and he also proves limitations of two server PIRs in a restricted setting that covers all currently known schemes. -- Publisher description
Member of
Cataloging source
GW5XE
http://library.link/vocab/creatorName
Yekhanin, Sergey
Dewey number
005.82
Index
index present
Language note
English
LC call number
QA76.9.A25
LC item number
Y45 2010eb
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
Series statement
Information security and cryptography
http://library.link/vocab/subjectName
  • Data encryption (Computer science)
  • Information retrieval
  • COMPUTERS
  • Informatique
  • Data encryption (Computer science)
  • Information retrieval
  • Kryptologie
  • Fehlerkorrekturcode
  • Sicherheitsprotokoll
  • Information Retrieval
  • Privatsphäre
Label
Locally decodable codes and private information retrieval schemes, Sergey Yekhanin
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Preface -- Acknowledgments -- Contents -- 1 Introduction -- 1.1 Locally decodable codes -- 1.1.1 Hadamard code -- 1.1.2 A code based on polynomial interpolation -- 1.2 Private information retrieval schemes -- 1.2.1 A PIR scheme based on polynomial interpolation -- 1.3 The history of LDCs and PIR schemes -- 1.3.1 The first generation: interpolation -- 1.3.2 The second generation: recursion -- 1.3.3 The third generation: point removal -- 1.3.4 Lower bounds -- 1.4 Applications of LDCs and PIR schemes -- 1.4.1 Secure multiparty computation
  • 1.4.2 Other models of private information retrieval1.4.3 Average-case complexity -- 1.5 Organization of the book -- 1.6 Addendum -- 2 Locally decodable codes via the point removal method -- 2.1 Notation -- 2.2 Locally decodable codes -- 2.3 Binary LDCs via point removal -- 2.3.1 Regular intersecting families of sets -- 2.3.2 Basic construction -- 2.3.3 The main construction: point removal -- 2.4 General LDCs via point removal -- 2.5 Combinatorially nice subsets of Fp* -- 2.6 Algebraically nice subsets of Fp*
  • 2.6.1 3-dependences between p-th roots: sufficient conditions2.6.2 k-dependences between p-th roots: a sufficient condition -- 2.6.3 Summary -- 2.7 Results -- 2.7.1 Results for three-query binary codes -- 2.7.2 Results for general codes -- 2.8 Addendum -- 2.8.1 The code -- 3 Limitations of the point removal method -- 3.1 Attaining subexponential length requires a nice sequence -- 3.1.1 Point removal method -- 3.1.2 Point removal and bounds for P(rt-1) -- 3.1.3 Our results -- 3.2 A nice sequence yields short dependences between p-th roots
  • 3.2.1 Algebraically nice subsets of Fq*3.2.2 Combinatorially nice subsets of Fq* -- 3.2.3 Summary -- 3.3 k-dependences between p-th roots: a necessary condition -- 3.4 3-dependences between p-th roots: a necessary condition -- 3.5 Summary -- 3.6 Conclusions -- 3.7 Addendum -- 4 Private information retrieval -- 4.1 Preliminaries -- 4.2 From LDCs to PIR schemes -- 4.2.1 Upper bounds for three-server binary PIR schemes -- 4.2.2 Upper bounds for general PIR schemes -- 4.3 A combinatorial view of two-server PIR -- 4.3.1 Bilinear PIR -- 4.3.2 Group-based PIR
  • 4.4 Complexity of bilinear group-based PIR4.4.1 Algebraic preliminaries -- 4.4.2 Algebraic formulation -- 4.4.3 Low-dimensional principal ideals in group algebras -- 4.5 Summary of lower bounds for two-server PIR -- 4.6 Addendum -- References -- Index
Control code
695395888
Dimensions
unknown
Extent
1 online resource.
Form of item
online
Isbn
9783642143571
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other control number
10.1007/978-3-642-14358-8
http://library.link/vocab/ext/overdrive/overdriveId
978-3-642-14357-1
Specific material designation
remote
System control number
(OCoLC)695395888
Label
Locally decodable codes and private information retrieval schemes, Sergey Yekhanin
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Preface -- Acknowledgments -- Contents -- 1 Introduction -- 1.1 Locally decodable codes -- 1.1.1 Hadamard code -- 1.1.2 A code based on polynomial interpolation -- 1.2 Private information retrieval schemes -- 1.2.1 A PIR scheme based on polynomial interpolation -- 1.3 The history of LDCs and PIR schemes -- 1.3.1 The first generation: interpolation -- 1.3.2 The second generation: recursion -- 1.3.3 The third generation: point removal -- 1.3.4 Lower bounds -- 1.4 Applications of LDCs and PIR schemes -- 1.4.1 Secure multiparty computation
  • 1.4.2 Other models of private information retrieval1.4.3 Average-case complexity -- 1.5 Organization of the book -- 1.6 Addendum -- 2 Locally decodable codes via the point removal method -- 2.1 Notation -- 2.2 Locally decodable codes -- 2.3 Binary LDCs via point removal -- 2.3.1 Regular intersecting families of sets -- 2.3.2 Basic construction -- 2.3.3 The main construction: point removal -- 2.4 General LDCs via point removal -- 2.5 Combinatorially nice subsets of Fp* -- 2.6 Algebraically nice subsets of Fp*
  • 2.6.1 3-dependences between p-th roots: sufficient conditions2.6.2 k-dependences between p-th roots: a sufficient condition -- 2.6.3 Summary -- 2.7 Results -- 2.7.1 Results for three-query binary codes -- 2.7.2 Results for general codes -- 2.8 Addendum -- 2.8.1 The code -- 3 Limitations of the point removal method -- 3.1 Attaining subexponential length requires a nice sequence -- 3.1.1 Point removal method -- 3.1.2 Point removal and bounds for P(rt-1) -- 3.1.3 Our results -- 3.2 A nice sequence yields short dependences between p-th roots
  • 3.2.1 Algebraically nice subsets of Fq*3.2.2 Combinatorially nice subsets of Fq* -- 3.2.3 Summary -- 3.3 k-dependences between p-th roots: a necessary condition -- 3.4 3-dependences between p-th roots: a necessary condition -- 3.5 Summary -- 3.6 Conclusions -- 3.7 Addendum -- 4 Private information retrieval -- 4.1 Preliminaries -- 4.2 From LDCs to PIR schemes -- 4.2.1 Upper bounds for three-server binary PIR schemes -- 4.2.2 Upper bounds for general PIR schemes -- 4.3 A combinatorial view of two-server PIR -- 4.3.1 Bilinear PIR -- 4.3.2 Group-based PIR
  • 4.4 Complexity of bilinear group-based PIR4.4.1 Algebraic preliminaries -- 4.4.2 Algebraic formulation -- 4.4.3 Low-dimensional principal ideals in group algebras -- 4.5 Summary of lower bounds for two-server PIR -- 4.6 Addendum -- References -- Index
Control code
695395888
Dimensions
unknown
Extent
1 online resource.
Form of item
online
Isbn
9783642143571
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other control number
10.1007/978-3-642-14358-8
http://library.link/vocab/ext/overdrive/overdriveId
978-3-642-14357-1
Specific material designation
remote
System control number
(OCoLC)695395888

Library Locations

    • Ellis LibraryBorrow it
      1020 Lowry Street, Columbia, MO, 65201, US
      38.944491 -92.326012
    • Engineering Library & Technology CommonsBorrow it
      W2001 Lafferre Hall, Columbia, MO, 65211, US
      38.946102 -92.330125
Processing Feedback ...