Coverart for item
The Resource Markov chains : analytic and Monte Carlo computations, Carl Graham

Markov chains : analytic and Monte Carlo computations, Carl Graham

Label
Markov chains : analytic and Monte Carlo computations
Title
Markov chains
Title remainder
analytic and Monte Carlo computations
Statement of responsibility
Carl Graham
Creator
Subject
Language
eng
Summary
Markov Chains: Analytic and Monte Carlo Computations introduces the main notions related to Markov chains and provides explanations on how to characterize, simulate, and recognize them. Starting with basic notions, this book leads progressively to advanced and recent topics in the field, allowing the reader to master the main aspects of the classical theory. This book also features: Numerous exercises with solutions as well as extended case studies. A detailed and rigorous presentation of Markov chains with discrete time and state space
Member of
Cataloging source
DLC
http://library.link/vocab/creatorName
Graham, C.
Dewey number
519.2/33
Index
index present
LC call number
QA274.7
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
Series statement
Wiley series in probability and statistics
http://library.link/vocab/subjectName
  • Markov processes
  • Monte Carlo method
  • Numerical calculations
  • MATHEMATICS
  • MATHEMATICS
  • Markov processes
  • Monte Carlo method
  • Numerical calculations
Label
Markov chains : analytic and Monte Carlo computations, Carl Graham
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Cover; Title Page; Copyright; Contents; Preface; List of Figures; Nomenclature; Introduction; Chapter 1 First steps; 1.1 Preliminaries; 1.2 First properties of Markov chains; 1.2.1 Markov chains, finite-dimensional marginals, and laws; 1.2.2 Transition matrix action and matrix notation; 1.2.3 Random recursion and simulation; 1.2.4 Recursion for the instantaneous laws, invariant laws; 1.3 Natural duality: algebraic approach; 1.3.1 Complex eigenvalues and spectrum; 1.3.2 Doeblin condition and strong irreducibility; 1.3.3 Finite state space Markov chains; 1.4 Detailed examples
  • 2.3 Detailed examples2.3.1 Gambler's ruin; 2.3.2 Unilateral hitting time for a random walk; 2.3.3 Exit time from a box; 2.3.4 Branching process; 2.3.5 Word search; Exercises; Chapter 3 Transience and recurrence; 3.1 Sample paths and state space; 3.1.1 Communication and closed irreducible classes; 3.1.2 Transience and recurrence, recurrent class decomposition; 3.1.3 Detailed examples; 3.2 Invariant measures and recurrence; 3.2.1 Invariant laws and measures; 3.2.2 Canonical invariant measure; 3.2.3 Positive recurrence, invariant law criterion; 3.2.4 Detailed examples; 3.3 Complements
  • 3.3.1 Hitting times and superharmonic functions3.3.2 Lyapunov functions; 3.3.3 Time reversal, reversibility, and adjoint chain; 3.3.4 Birth-and-death chains; Exercises; Chapter 4 Long-time behavior; 4.1 Path regeneration and convergence; 4.1.1 Pointwise ergodic theorem, extensions; 4.1.2 Central limit theorem for Markov chains; 4.1.3 Detailed examples; 4.2 Long-time behavior of the instantaneous laws; 4.2.1 Period and aperiodic classes; 4.2.2 Coupling of Markov chains and convergence in law; 4.2.3 Detailed examples; 4.3 Elements on the rate of convergence for laws
  • 4.3.1 The Hilbert space framework4.3.2 Dirichlet form, spectral gap, and exponential bounds; 4.3.3 Spectral theory for reversible matrices; 4.3.4 Continuous-time Markov chains; Exercises; Chapter 5 Monte Carlo methods; 5.1 Approximate solution of the Dirichlet problem; 5.1.1 General principles; 5.1.2 Heat equation in equilibrium; 5.1.3 Heat equation out of equilibrium; 5.1.4 Parabolic partial differential equations; 5.2 Invariant law simulation; 5.2.1 Monte Carlo methods and ergodic theorems; 5.2.2 Metropolis algorithm, Gibbs law, and simulated annealing
Control code
865574978
Extent
1 online resource
Form of item
online
Isbn
9781118882696
Lccn
2013050092
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
http://library.link/vocab/ext/overdrive/overdriveId
cl0500000628
Specific material designation
remote
System control number
(OCoLC)865574978
Label
Markov chains : analytic and Monte Carlo computations, Carl Graham
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Cover; Title Page; Copyright; Contents; Preface; List of Figures; Nomenclature; Introduction; Chapter 1 First steps; 1.1 Preliminaries; 1.2 First properties of Markov chains; 1.2.1 Markov chains, finite-dimensional marginals, and laws; 1.2.2 Transition matrix action and matrix notation; 1.2.3 Random recursion and simulation; 1.2.4 Recursion for the instantaneous laws, invariant laws; 1.3 Natural duality: algebraic approach; 1.3.1 Complex eigenvalues and spectrum; 1.3.2 Doeblin condition and strong irreducibility; 1.3.3 Finite state space Markov chains; 1.4 Detailed examples
  • 2.3 Detailed examples2.3.1 Gambler's ruin; 2.3.2 Unilateral hitting time for a random walk; 2.3.3 Exit time from a box; 2.3.4 Branching process; 2.3.5 Word search; Exercises; Chapter 3 Transience and recurrence; 3.1 Sample paths and state space; 3.1.1 Communication and closed irreducible classes; 3.1.2 Transience and recurrence, recurrent class decomposition; 3.1.3 Detailed examples; 3.2 Invariant measures and recurrence; 3.2.1 Invariant laws and measures; 3.2.2 Canonical invariant measure; 3.2.3 Positive recurrence, invariant law criterion; 3.2.4 Detailed examples; 3.3 Complements
  • 3.3.1 Hitting times and superharmonic functions3.3.2 Lyapunov functions; 3.3.3 Time reversal, reversibility, and adjoint chain; 3.3.4 Birth-and-death chains; Exercises; Chapter 4 Long-time behavior; 4.1 Path regeneration and convergence; 4.1.1 Pointwise ergodic theorem, extensions; 4.1.2 Central limit theorem for Markov chains; 4.1.3 Detailed examples; 4.2 Long-time behavior of the instantaneous laws; 4.2.1 Period and aperiodic classes; 4.2.2 Coupling of Markov chains and convergence in law; 4.2.3 Detailed examples; 4.3 Elements on the rate of convergence for laws
  • 4.3.1 The Hilbert space framework4.3.2 Dirichlet form, spectral gap, and exponential bounds; 4.3.3 Spectral theory for reversible matrices; 4.3.4 Continuous-time Markov chains; Exercises; Chapter 5 Monte Carlo methods; 5.1 Approximate solution of the Dirichlet problem; 5.1.1 General principles; 5.1.2 Heat equation in equilibrium; 5.1.3 Heat equation out of equilibrium; 5.1.4 Parabolic partial differential equations; 5.2 Invariant law simulation; 5.2.1 Monte Carlo methods and ergodic theorems; 5.2.2 Metropolis algorithm, Gibbs law, and simulated annealing
Control code
865574978
Extent
1 online resource
Form of item
online
Isbn
9781118882696
Lccn
2013050092
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
http://library.link/vocab/ext/overdrive/overdriveId
cl0500000628
Specific material designation
remote
System control number
(OCoLC)865574978

Library Locations

    • Ellis LibraryBorrow it
      1020 Lowry Street, Columbia, MO, 65201, US
      38.944491 -92.326012
    • Engineering Library & Technology CommonsBorrow it
      W2001 Lafferre Hall, Columbia, MO, 65211, US
      38.946102 -92.330125
Processing Feedback ...