The Resource Mechanosensitivity in cells and tissues, edited by Andre Kamkin and Irina Kiseleva

Mechanosensitivity in cells and tissues, edited by Andre Kamkin and Irina Kiseleva

Label
Mechanosensitivity in cells and tissues
Title
Mechanosensitivity in cells and tissues
Statement of responsibility
edited by Andre Kamkin and Irina Kiseleva
Contributor
Editor
Subject
Language
eng
Summary
"Mechanosensitivity, i.e. the specific response to mechanical stimulation, is common to a wide variety of cells in many different organisms ranging from bacteria to mammals. Mechanical stress can modulate physiological processes at the molecular, cellular, and systemic level. The primary target for mechanical stimulation is the plasma membrane of the cell, which can respond to variable physical stress with changes of the open probability of mechanosensitive ion channels. Thus, acting on ion channels in the plasma membrane, mechanical stress can elicit a multitude of biochemical processes - both transient and long-lasting - inside a cell. This may ultimately influence the function of tissues and organs in health and disease. Several stretch-induced signaling cascades have been described with multiple levels of crosstalk between the different pathways. Increased sensitivity of the cells to mechanical stress is found under various pathological conditions. A detailed study of the underlying mechanisms may therefore help to identify novel therapeutic targets for a future clinical use."
Cataloging source
EYM
http://bibfra.me/vocab/relation/editorfcompilation
5_roQuXvZP0
Illustrations
illustrations
Index
no index present
LC call number
QL938.M4
LC item number
(INTERNET)
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
NLM call number
WL 102.9
http://library.link/vocab/relatedWorkOrContributorName
  • Kamkin, A. G.
  • Kiseleva, Irina
http://library.link/vocab/subjectName
  • Mechanoreceptors
  • Mechanoreceptors
  • Ion Channels
  • Mechanotransduction, Cellular
  • Mechanoreceptors
Label
Mechanosensitivity in cells and tissues, edited by Andre Kamkin and Irina Kiseleva
Instantiates
Publication
Bibliography note
Includes bibliographical references
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier.
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent.
Contents
Mechanosensitivity of cells from various tissues -- Mechanotransduction in the Nematode Caenorhabditis elegans -- Mechanically mediated crosstalk in heart -- Swelling-and stretch-activated chloride channels in the heart: regulation and function -- Role of stretch-activated channels in the heart: action potential and Ca2+ transients -- Isolated cardiomyocytes: mechanosensitivity of action potential, membrane current and ion concentration -- Mechano-electric feedback in the heart: evidence from intracellular microelectrode recordings on multicellular preparations and single cells from healthy and diseased tissue -- The Role of mechanosensitive fibroblasts in the heart -- Mechanical modulation of intracellular ion concentrations: mechanisms and electrical consequences -- Stretch-induced slow force response in mammalian ventricular myocardium -- The Na+/H+ exchanger as the main protagonist following myocardial stretch: the Anrep effect and myocardial hypertrophy -- Mechano-electric feedback and atrial arrhythmias -- The Role of mechano-electrical feedback in the cholinergic atrial fibrillation initiation -- Mechanosensitive cation channels of leech neurons -- Mechanosensitivity of primary afferent nociceptors in the pain pathway -- Stimulus-secretion coupling in the osmoreceptive prolactin cell of the tilapia -- Stretch-inactivated channels in skeletal muscle -- Stretch-activated cation channels and the myogenic response of small arteries -- Mechanobiology of bone tissue and bone cells -- Functional roles of mechanosensitive ion channels, [beta]1 integrins and kinase cascades in chondrocyte mechanotransduction -- Enigmatic roles of the epithelial sodium channel (ENaC) in articular chondrocytes and osteoblasts: mechanotransduction, sodium transport or extracellular sodium sensing?
Control code
76812554
Extent
1 online resource
Form of item
online
Media category
computer
Media MARC source
rdamedia.
Media type code
  • c
Other physical details
illustrations (some color)
Specific material designation
remote
System control number
(OCoLC)76812554
Label
Mechanosensitivity in cells and tissues, edited by Andre Kamkin and Irina Kiseleva
Publication
Bibliography note
Includes bibliographical references
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier.
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent.
Contents
Mechanosensitivity of cells from various tissues -- Mechanotransduction in the Nematode Caenorhabditis elegans -- Mechanically mediated crosstalk in heart -- Swelling-and stretch-activated chloride channels in the heart: regulation and function -- Role of stretch-activated channels in the heart: action potential and Ca2+ transients -- Isolated cardiomyocytes: mechanosensitivity of action potential, membrane current and ion concentration -- Mechano-electric feedback in the heart: evidence from intracellular microelectrode recordings on multicellular preparations and single cells from healthy and diseased tissue -- The Role of mechanosensitive fibroblasts in the heart -- Mechanical modulation of intracellular ion concentrations: mechanisms and electrical consequences -- Stretch-induced slow force response in mammalian ventricular myocardium -- The Na+/H+ exchanger as the main protagonist following myocardial stretch: the Anrep effect and myocardial hypertrophy -- Mechano-electric feedback and atrial arrhythmias -- The Role of mechano-electrical feedback in the cholinergic atrial fibrillation initiation -- Mechanosensitive cation channels of leech neurons -- Mechanosensitivity of primary afferent nociceptors in the pain pathway -- Stimulus-secretion coupling in the osmoreceptive prolactin cell of the tilapia -- Stretch-inactivated channels in skeletal muscle -- Stretch-activated cation channels and the myogenic response of small arteries -- Mechanobiology of bone tissue and bone cells -- Functional roles of mechanosensitive ion channels, [beta]1 integrins and kinase cascades in chondrocyte mechanotransduction -- Enigmatic roles of the epithelial sodium channel (ENaC) in articular chondrocytes and osteoblasts: mechanotransduction, sodium transport or extracellular sodium sensing?
Control code
76812554
Extent
1 online resource
Form of item
online
Media category
computer
Media MARC source
rdamedia.
Media type code
  • c
Other physical details
illustrations (some color)
Specific material designation
remote
System control number
(OCoLC)76812554

Library Locations

  • Ellis LibraryBorrow it
    1020 Lowry Street, Columbia, MO, 65201, US
    38.944491 -92.326012
  • Engineering Library & Technology CommonsBorrow it
    W2001 Lafferre Hall, Columbia, MO, 65211, US
    38.946102 -92.330125
  • Fisher Delta Research CenterBorrow it
    2-64 Agricultural Bldg, Columbia, MO, 65201, US
    38.958397 -92.303491
  • Geological Sciences LibraryBorrow it
    201 Geological Sciences, Columbia, MO, 65211, US
    38.947375 -92.329062
  • J. Otto Lottes Health Sciences LibraryBorrow it
    1 Hospital Dr, Columbia, MO, 65201, US
    38.939544 -92.328377
  • Journalism LibraryBorrow it
    102 Reynolds Jrnlism Institute, Columbia, MO, 65211, US
    38.947290 -92.328025
  • Mathematical Sciences LibraryBorrow it
    104 Ellis Library, Columbia, MO, 65201, US
    38.944377 -92.326537
  • University ArchivesBorrow it
    Columbia, MO, 65201, US
  • University Archives McAlester AnnexBorrow it
    703 Lewis Hall, Columbia, MO, 65211, US
    38.934630 -92.342290
  • University of Missouri Libraries DepositoryBorrow it
    2908 Lemone Blvd, Columbia, MO, 65211, US
    38.919360 -92.291620
  • Zalk Veterinary Medical LibraryBorrow it
    Veterinary Medicine West, Columbia, MO, 65211, US
    38.941099 -92.317911
Processing Feedback ...