The Resource Minimax systems and critical point theory, Martin Schechter
Minimax systems and critical point theory, Martin Schechter
Resource Information
The item Minimax systems and critical point theory, Martin Schechter represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Minimax systems and critical point theory, Martin Schechter represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 1 library branch.
- Summary
- This text starts at the foundations of the field, and is accessible with some background in functional analysis. As such, the book is ideal for classroom of self study. The new material covered also makes this book a must read for researchers in the theory of critical points
- Language
- eng
- Extent
- 1 online resource
- Contents
-
- Preface
- Critical Points of Functionals
- Minimax Systems
- Examples of Minimax Systems
- Ordinary Differential Equations
- The Method using Flows
- Finding Linking Sets
- Sandwich Pairs
- Semilinear Problems
- Superlinear Problems
- Weak Linking.-Resonance Problems
- Rotationally Invariant Solutions
- Semilinear Wave Equations.-Type (II) Regions
- Weak Sandwich Pairs
- Multiple Solutions
- Second Order Periodic Systems
- Bibliography
- Isbn
- 9780817649029
- Label
- Minimax systems and critical point theory
- Title
- Minimax systems and critical point theory
- Statement of responsibility
- Martin Schechter
- Subject
-
- Chebyshev approximation
- Chebyshev approximation
- Chebyshev approximation
- Critical point theory (Mathematical analysis)
- Critical point theory (Mathematical analysis)
- Chebyshev approximation
- Critical point theory (Mathematical analysis)
- Differentialgleichungssystem
- Kritischer Punkt
- MATHEMATICS -- Topology
- Variationsrechnung
- Critical point theory (Mathematical analysis)
- Language
- eng
- Summary
- This text starts at the foundations of the field, and is accessible with some background in functional analysis. As such, the book is ideal for classroom of self study. The new material covered also makes this book a must read for researchers in the theory of critical points
- Cataloging source
- GW5XE
- http://library.link/vocab/creatorName
- Schechter, Martin
- Dewey number
- 514/.74
- Index
- index present
- Language note
- English
- LC call number
- QA614.7
- LC item number
- .S34 2009
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- http://library.link/vocab/subjectName
-
- Critical point theory (Mathematical analysis)
- Chebyshev approximation
- MATHEMATICS
- Critical point theory (Mathematical analysis)
- Chebyshev approximation
- Chebyshev approximation
- Critical point theory (Mathematical analysis)
- Differentialgleichungssystem
- Kritischer Punkt
- Variationsrechnung
- Label
- Minimax systems and critical point theory, Martin Schechter
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Preface -- Critical Points of Functionals -- Minimax Systems -- Examples of Minimax Systems -- Ordinary Differential Equations -- The Method using Flows -- Finding Linking Sets -- Sandwich Pairs -- Semilinear Problems -- Superlinear Problems -- Weak Linking.-Resonance Problems -- Rotationally Invariant Solutions -- Semilinear Wave Equations.-Type (II) Regions -- Weak Sandwich Pairs -- Multiple Solutions -- Second Order Periodic Systems -- Bibliography
- Control code
- 423397466
- Dimensions
- unknown
- Extent
- 1 online resource
- Form of item
- online
- Isbn
- 9780817649029
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other control number
- 10.1007/978-0-8176-4902-9
- http://library.link/vocab/ext/overdrive/overdriveId
- 978-0-8176-4805-3
- Specific material designation
- remote
- System control number
- (OCoLC)423397466
- Label
- Minimax systems and critical point theory, Martin Schechter
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Preface -- Critical Points of Functionals -- Minimax Systems -- Examples of Minimax Systems -- Ordinary Differential Equations -- The Method using Flows -- Finding Linking Sets -- Sandwich Pairs -- Semilinear Problems -- Superlinear Problems -- Weak Linking.-Resonance Problems -- Rotationally Invariant Solutions -- Semilinear Wave Equations.-Type (II) Regions -- Weak Sandwich Pairs -- Multiple Solutions -- Second Order Periodic Systems -- Bibliography
- Control code
- 423397466
- Dimensions
- unknown
- Extent
- 1 online resource
- Form of item
- online
- Isbn
- 9780817649029
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other control number
- 10.1007/978-0-8176-4902-9
- http://library.link/vocab/ext/overdrive/overdriveId
- 978-0-8176-4805-3
- Specific material designation
- remote
- System control number
- (OCoLC)423397466
Subject
- Chebyshev approximation
- Chebyshev approximation
- Chebyshev approximation
- Critical point theory (Mathematical analysis)
- Critical point theory (Mathematical analysis)
- Chebyshev approximation
- Critical point theory (Mathematical analysis)
- Differentialgleichungssystem
- Kritischer Punkt
- MATHEMATICS -- Topology
- Variationsrechnung
- Critical point theory (Mathematical analysis)
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Minimax-systems-and-critical-point-theory-Martin/MJKdSLNb3FY/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Minimax-systems-and-critical-point-theory-Martin/MJKdSLNb3FY/">Minimax systems and critical point theory, Martin Schechter</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Minimax systems and critical point theory, Martin Schechter
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Minimax-systems-and-critical-point-theory-Martin/MJKdSLNb3FY/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Minimax-systems-and-critical-point-theory-Martin/MJKdSLNb3FY/">Minimax systems and critical point theory, Martin Schechter</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>