The Resource Modeling in biopharmaceutics, pharmacokinetics, and pharmacodynamics : homogeneous and heterogeneous approaches, Panos Macheras, Athanassios Iliadis
Modeling in biopharmaceutics, pharmacokinetics, and pharmacodynamics : homogeneous and heterogeneous approaches, Panos Macheras, Athanassios Iliadis
Resource Information
The item Modeling in biopharmaceutics, pharmacokinetics, and pharmacodynamics : homogeneous and heterogeneous approaches, Panos Macheras, Athanassios Iliadis represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Modeling in biopharmaceutics, pharmacokinetics, and pharmacodynamics : homogeneous and heterogeneous approaches, Panos Macheras, Athanassios Iliadis represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 1 library branch.
- Extent
- xx, 442 pages
- Contents
-
- 8
- 51
- II
- Modeling in Biopharmaceutics
- 53
- 4
- Drug Release
- 57
- 4.1
- The Higuchi Model
- 58
- 1.3
- 4.2
- Systems with Different Geometries
- 60
- 4.3
- The Power-Law Model
- 63
- 4.3.1
- Higuchi Model vs. Power-Law Model
- 64
- 4.4
- Fractal Dimension
- Recent Mechanistic Models
- 67
- 4.5
- Monte Carlo Simulations
- 68
- 4.5.1
- Verification of the Higuchi Law
- 69
- 4.5.2
- Drug Release from Homogeneous Cylinders
- 9
- 70
- 4.5.3
- Release from Fractal Matrices
- 75
- 4.6
- Discernment of Drug Release Kinetics
- 82
- 4.7
- Release from Bioerodible Microparticles
- 83
- 1.4
- 4.8
- Dynamic Aspects in Drug Release
- 86
- 5
- Drug Dissolution
- 89
- 5.1
- The Diffusion Layer Model
- 90
- 5.1.1
- Estimation of Fractal Dimension
- Alternative Classical Dissolution Relationships
- 92
- 5.1.2
- Fractal Considerations in Drug Dissolution
- 93
- 5.1.3
- On the Use of the Weibull Function in Dissolution
- 94
- 5.1.4
- Stochastic Considerations
- 11
- 97
- 5.2
- The Interfacial Barrier Model
- 100
- 5.2.1
- A Continuous Reaction-Limited Dissolution Model
- 100
- 5.2.2
- A Discrete Reaction-Limited Dissolution Model
- 101
- 1.4.1
- 5.2.3
- Modeling Supersaturated Dissolution Data
- 107
- 5.3
- Modeling Random Effects
- 109
- 5.4
- Homogeneity vs. Heterogeneity
- 110
- 5.5
- Self-Similarity Considerations
- Comparison of Dissolution Profiles
- 111
- 6
- Oral Drug Absorption
- 113
- 6.1
- Pseudoequilibrium Models
- 114
- 6.1.1
- The pH-Partition Hypothesis
- 11
- 114
- 6.1.2
- Absorption Potential
- 115
- 6.2
- Mass Balance Approaches
- 117
- 6.2.1
- Macroscopic Approach
- 118
- 1
- 1.4.2
- 6.2.2
- Microscopic Approach
- 121
- 6.3
- Dynamic Models
- 122
- 6.3.1
- Compartmental Models
- 122
- 6.3.2
- Power-Law Scaling
- Convection-Dispersion Models
- 124
- 6.4
- Heterogeneous Approaches
- 129
- 6.4.1
- The Heterogeneous Character of GI Transit
- 129
- 6.4.2
- Is in Vivo Drug Dissolution a Fractal Process?
- 12
- 130
- 6.4.3
- Fractal-like Kinetics in Gastrointestinal Absorption
- 132
- 6.4.4
- The Fractal Nature of Absorption Processes
- 134
- 6.4.5
- Modeling Drug Transit in the Intestines
- 136
- 1.5
- 6.4.6
- Probabilistic Model for Drug Absorption
- 142
- 6.5
- Absorption Models Based on Structure
- 147
- 6.6
- Regulatory Aspects
- 148
- 6.6.1
- Self-Affine Fractals
- Biopharmaceutics Classification of Drugs
- 148
- 6.6.2
- The Problem with the Biowaivers
- 151
- 6.7
- Randomness and Chaotic Behavior
- 158
- III
- Modeling In Pharmacokinetics
- 12
- 161
- 7
- Empirical Models
- 165
- 7.1
- Power Functions and Heterogeneity
- 167
- 7.2
- Heterogeneous Processes
- 169
- 1.6
- 7.2.1
- Distribution, Blood Vessels Network
- 169
- 7.2.2
- Elimination, Liver Structure
- 171
- 7.3
- Fractal Time and Fractal Processes
- 174
- 7.4
- More About Dimensionality
- Modeling Heterogeneity
- 175
- 7.4.1
- Fractal Concepts
- 176
- 7.4.2
- Empirical Concepts
- 177
- 7.5
- Heterogeneity and Time Dependence
- 13
- 178
- 7.6
- Simulation with Empirical Models
- 181
- 8
- Deterministic Compartmental Models
- 183
- 8.1
- Linear Compartmental Models
- 184
- 1.7
- 8.2
- Routes of Administration
- 186
- 8.3
- Time-Concentration Profiles
- 187
- 8.4
- Random Fractional Flow Rates
- 188
- 8.5
- The Geometry of Nature
- Percolation
- Nonlinear Compartmental Models
- 189
- 8.5.1
- The Enzymatic Reaction
- 191
- 8.6
- Complex Deterministic Models
- 193
- 8.6.1
- Geometric Considerations
- 14
- 194
- 8.6.2
- Tracer Washout Curve
- 195
- 8.6.3
- Model for the Circulatory System
- 197
- 8.7
- Compartmental Models and Heterogeneity
- 199
- 2
- 9
- Stochastic Compartmental Models
- 205
- 9.1
- Probabilistic Transfer Models
- 206
- 9.1.2
- The Basic Steps
- 208
- 9.2
- Diffusion and Kinetics
- Retention-Time Distribution Models
- 210
- 9.2.1
- Probabilistic vs. Retention-Time Models
- 210
- 9.2.2
- Markov vs. Semi-Markov Models
- 212
- 9.2.3
- Irreversible Models
- 17
- 214
- 9.2.4
- Reversible Models
- 217
- 9.2.5
- Time-Varying Hazard Rates
- 222
- 9.2.6
- Pseudocompartment Techniques
- 225
- 2.1
- 9.2.7
- A Typical Two-Compartment Model
- 231
- 9.3
- Time-Concentration Profiles
- 235
- 9.3.1
- Routes of Administration
- 236
- 9.3.2
- Random Walks and Regular Diffusion
- Some Typical Drug Administration Schemes
- 237
- 9.3.3
- Time-Amount Functions
- 239
- 9.3.4
- Process Uncertainty or Stochastic Error
- 243
- 9.3.5
- Distribution of Particles and Process Uncertainty
- 18
- 245
- 9.3.6
- Time Profiles of the Model
- 249
- 9.4
- Random Hazard-Rate Models
- 251
- 9.4.1
- Probabilistic Models with Random Hazard Rates
- 253
- 2.2
- 9.4.2
- Retention-Time Models with Random Hazard Rates
- 258
- 9.5
- The Kolmogorov or Master Equations
- 260
- 9.5.1
- Master Equation and Diffusion
- 263
- 9.5.2
- Anomalous Diffusion
- Exact Solution in Matrix Form
- 265
- 9.5.3
- Cumulant Generating Functions
- 265
- 9.5.4
- Stochastic Simulation Algorithm
- 267
- 9.5.5
- Simulation of Linear and Nonlinear Models
- 5
- 22
- 272
- 9.6
- Fractals and Stochastic Modeling
- 281
- 9.7
- Stochastic vs. Deterministic Models
- 285
- IV
- Modeling in Pharmacodynamics
- 289
- 2.3
- 10
- Classical Pharmacodynamics
- 293
- 10.1
- Occupancy Theory in Pharmacology
- 293
- 10.2
- Empirical Pharmacodynamic Models
- 295
- 10.3
- Fick's Laws of Diffusion
- Pharmacokinetic-Dynamic Modeling
- 296
- 10.3.1
- Link Models
- 297
- 10.3.2
- Response Models
- 303
- 10.4
- Other Pharmacodynamic Models
- 23
- 305
- 10.4.1
- The Receptor-Transducer Model
- 305
- 10.4.2
- Irreversible Models
- 305
- 10.4.3
- Time-Variant Models
- 306
- 2.4
- 10.4.4
- Dynamic Nonlinear Models
- 308
- 10.5
- Unification of Pharmacodynamic Models
- 309
- 10.6
- The Population Approach
- 310
- 10.6.1
- Classical Kinetics
- Inter- and Intraindividual Variability
- 310
- 10.6.2
- Models and Software
- 311
- 10.6.3
- Covariates
- 312
- 10.6.4
- Applications
- 27
- 313
- 11
- Nonclassical Pharmacodynamics
- 315
- 11.1
- Nonlinear Concepts in Pharmacodynamics
- 316
- 11.1.1
- Negative Feedback
- 316
- 2.4.1
- 11.1.2
- Delayed Negative Feedback
- 322
- 11.2
- Pharmacodynamic Applications
- 334
- 11.2.1
- Drugs Affecting Endocrine Function
- 334
- 11.2.2
- Passive Transport Processes
- Central Nervous System Drugs
- 344
- 11.2.3
- Cardiovascular Drugs
- 348
- A Stability Analysis
- 353
- B
- Monte Carlo Simulations in Drug Release
- 355
- 28
- C
- Time-Varying Models
- 359
- D
- Probability
- 363
- D.1
- Basic Properties
- 363
- D.2
- 1.1
- 2.4.2
- Expectation, Variance, and Covariance
- 364
- D.3
- Conditional Expectation and Variance
- 365
- D.4
- Generating Functions
- 365
- E
- Convolution in Probability Theory
- Reaction Processes: Diffusion- or Reaction-Limited?
- 367
- F
- Laplace Transform
- 369
- G
- Estimation
- 371
- H
- Theorem on Continuous Functions
- 373
- 29
- 2.4.3
- Carrier-Mediated Transport
- 30
- 2.5
- Fractal-like Kinetics
- 31
- 2.5.1
- Geometric and Statistical Self-Similarity
- Segregation of Reactants
- 31
- 2.5.2
- Time-Dependent Rate Coefficients
- 32
- 2.5.3
- Effective Rate Equations
- 34
- 2.5.4
- Enzyme-Catalyzed Reactions
- 6
- 35
- 2.5.5
- Importance of the Power-Law Expressions
- 36
- 2.6
- Fractional Diffusion Equations
- 36
- 3
- Nonlinear Dynamics
- 39
- 1.2
- 3.1
- Dynamic Systems
- 41
- 3.2
- Attractors
- 42
- 3.3
- Bifurcation
- 43
- 3.4
- Scaling
- Sensitivity to Initial Conditions
- 45
- 3.5
- Reconstruction of the Phase Space
- 47
- 3.6
- Estimation and Control in Chaotic Systems
- 49
- 3.7
- Physiological Systems
- Isbn
- 9780387281780
- Label
- Modeling in biopharmaceutics, pharmacokinetics, and pharmacodynamics : homogeneous and heterogeneous approaches
- Title
- Modeling in biopharmaceutics, pharmacokinetics, and pharmacodynamics
- Title remainder
- homogeneous and heterogeneous approaches
- Statement of responsibility
- Panos Macheras, Athanassios Iliadis
- Subject
-
- Biopharmaceutics -- Mathematical models
- Biopharmaceutics -- methods
- Biopharmacie -- Modèles mathématiques
- Biopharmacie -- Modèles mathématiques
- Biopharmazie
- Drugs -- Physiological effect | Mathematical models
- Models, Theoretical
- Médicaments -- Effets physiologiques | Modèles mathématiques
- Pharmacocinétique -- Modèles mathématiques
- Pharmacocinétique -- Modèles mathématiques
- Pharmacodynamie - Modèles mathématiques
- Pharmacodynamie -- Modèles mathématiques
- Pharmacokinetics
- Pharmacokinetics -- Mathematical models
- Pharmakodynamik
- Pharmakokinetik
- Biomathematik
- Language
- eng
- Cataloging source
- MMU
- http://library.link/vocab/creatorName
- Macheras, P.
- Dewey number
- 615/.7
- Illustrations
- illustrations
- Index
- index present
- LC call number
- RM301.5
- LC item number
- .M33 2006
- Literary form
- non fiction
- Nature of contents
- bibliography
- NLM call number
-
- 2006 C-872
- QV 38
- NLM item number
- M149m 2006
- http://library.link/vocab/relatedWorkOrContributorName
- Iliadis, Athanassios
- Series statement
- Interdisciplinary applied mathematics
- Series volume
- v. 30
- http://library.link/vocab/subjectName
-
- Biopharmaceutics
- Pharmacokinetics
- Drugs
- Biopharmaceutics
- Models, Theoretical
- Pharmacokinetics
- Biopharmacie
- Pharmacocinétique
- Médicaments
- Biopharmacie
- Pharmacocinétique
- Pharmacodynamie
- Biomathematik
- Biopharmazie
- Pharmakodynamik
- Pharmakokinetik
- Pharmacodynamie - Modèles mathématiques
- Label
- Modeling in biopharmaceutics, pharmacokinetics, and pharmacodynamics : homogeneous and heterogeneous approaches, Panos Macheras, Athanassios Iliadis
- Bibliography note
- Includes bibliographical references (pages 383-432) and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- 8
- 51
- II
- Modeling in Biopharmaceutics
- 53
- 4
- Drug Release
- 57
- 4.1
- The Higuchi Model
- 58
- 1.3
- 4.2
- Systems with Different Geometries
- 60
- 4.3
- The Power-Law Model
- 63
- 4.3.1
- Higuchi Model vs. Power-Law Model
- 64
- 4.4
- Fractal Dimension
- Recent Mechanistic Models
- 67
- 4.5
- Monte Carlo Simulations
- 68
- 4.5.1
- Verification of the Higuchi Law
- 69
- 4.5.2
- Drug Release from Homogeneous Cylinders
- 9
- 70
- 4.5.3
- Release from Fractal Matrices
- 75
- 4.6
- Discernment of Drug Release Kinetics
- 82
- 4.7
- Release from Bioerodible Microparticles
- 83
- 1.4
- 4.8
- Dynamic Aspects in Drug Release
- 86
- 5
- Drug Dissolution
- 89
- 5.1
- The Diffusion Layer Model
- 90
- 5.1.1
- Estimation of Fractal Dimension
- Alternative Classical Dissolution Relationships
- 92
- 5.1.2
- Fractal Considerations in Drug Dissolution
- 93
- 5.1.3
- On the Use of the Weibull Function in Dissolution
- 94
- 5.1.4
- Stochastic Considerations
- 11
- 97
- 5.2
- The Interfacial Barrier Model
- 100
- 5.2.1
- A Continuous Reaction-Limited Dissolution Model
- 100
- 5.2.2
- A Discrete Reaction-Limited Dissolution Model
- 101
- 1.4.1
- 5.2.3
- Modeling Supersaturated Dissolution Data
- 107
- 5.3
- Modeling Random Effects
- 109
- 5.4
- Homogeneity vs. Heterogeneity
- 110
- 5.5
- Self-Similarity Considerations
- Comparison of Dissolution Profiles
- 111
- 6
- Oral Drug Absorption
- 113
- 6.1
- Pseudoequilibrium Models
- 114
- 6.1.1
- The pH-Partition Hypothesis
- 11
- 114
- 6.1.2
- Absorption Potential
- 115
- 6.2
- Mass Balance Approaches
- 117
- 6.2.1
- Macroscopic Approach
- 118
- 1
- 1.4.2
- 6.2.2
- Microscopic Approach
- 121
- 6.3
- Dynamic Models
- 122
- 6.3.1
- Compartmental Models
- 122
- 6.3.2
- Power-Law Scaling
- Convection-Dispersion Models
- 124
- 6.4
- Heterogeneous Approaches
- 129
- 6.4.1
- The Heterogeneous Character of GI Transit
- 129
- 6.4.2
- Is in Vivo Drug Dissolution a Fractal Process?
- 12
- 130
- 6.4.3
- Fractal-like Kinetics in Gastrointestinal Absorption
- 132
- 6.4.4
- The Fractal Nature of Absorption Processes
- 134
- 6.4.5
- Modeling Drug Transit in the Intestines
- 136
- 1.5
- 6.4.6
- Probabilistic Model for Drug Absorption
- 142
- 6.5
- Absorption Models Based on Structure
- 147
- 6.6
- Regulatory Aspects
- 148
- 6.6.1
- Self-Affine Fractals
- Biopharmaceutics Classification of Drugs
- 148
- 6.6.2
- The Problem with the Biowaivers
- 151
- 6.7
- Randomness and Chaotic Behavior
- 158
- III
- Modeling In Pharmacokinetics
- 12
- 161
- 7
- Empirical Models
- 165
- 7.1
- Power Functions and Heterogeneity
- 167
- 7.2
- Heterogeneous Processes
- 169
- 1.6
- 7.2.1
- Distribution, Blood Vessels Network
- 169
- 7.2.2
- Elimination, Liver Structure
- 171
- 7.3
- Fractal Time and Fractal Processes
- 174
- 7.4
- More About Dimensionality
- Modeling Heterogeneity
- 175
- 7.4.1
- Fractal Concepts
- 176
- 7.4.2
- Empirical Concepts
- 177
- 7.5
- Heterogeneity and Time Dependence
- 13
- 178
- 7.6
- Simulation with Empirical Models
- 181
- 8
- Deterministic Compartmental Models
- 183
- 8.1
- Linear Compartmental Models
- 184
- 1.7
- 8.2
- Routes of Administration
- 186
- 8.3
- Time-Concentration Profiles
- 187
- 8.4
- Random Fractional Flow Rates
- 188
- 8.5
- The Geometry of Nature
- Percolation
- Nonlinear Compartmental Models
- 189
- 8.5.1
- The Enzymatic Reaction
- 191
- 8.6
- Complex Deterministic Models
- 193
- 8.6.1
- Geometric Considerations
- 14
- 194
- 8.6.2
- Tracer Washout Curve
- 195
- 8.6.3
- Model for the Circulatory System
- 197
- 8.7
- Compartmental Models and Heterogeneity
- 199
- 2
- 9
- Stochastic Compartmental Models
- 205
- 9.1
- Probabilistic Transfer Models
- 206
- 9.1.2
- The Basic Steps
- 208
- 9.2
- Diffusion and Kinetics
- Retention-Time Distribution Models
- 210
- 9.2.1
- Probabilistic vs. Retention-Time Models
- 210
- 9.2.2
- Markov vs. Semi-Markov Models
- 212
- 9.2.3
- Irreversible Models
- 17
- 214
- 9.2.4
- Reversible Models
- 217
- 9.2.5
- Time-Varying Hazard Rates
- 222
- 9.2.6
- Pseudocompartment Techniques
- 225
- 2.1
- 9.2.7
- A Typical Two-Compartment Model
- 231
- 9.3
- Time-Concentration Profiles
- 235
- 9.3.1
- Routes of Administration
- 236
- 9.3.2
- Random Walks and Regular Diffusion
- Some Typical Drug Administration Schemes
- 237
- 9.3.3
- Time-Amount Functions
- 239
- 9.3.4
- Process Uncertainty or Stochastic Error
- 243
- 9.3.5
- Distribution of Particles and Process Uncertainty
- 18
- 245
- 9.3.6
- Time Profiles of the Model
- 249
- 9.4
- Random Hazard-Rate Models
- 251
- 9.4.1
- Probabilistic Models with Random Hazard Rates
- 253
- 2.2
- 9.4.2
- Retention-Time Models with Random Hazard Rates
- 258
- 9.5
- The Kolmogorov or Master Equations
- 260
- 9.5.1
- Master Equation and Diffusion
- 263
- 9.5.2
- Anomalous Diffusion
- Exact Solution in Matrix Form
- 265
- 9.5.3
- Cumulant Generating Functions
- 265
- 9.5.4
- Stochastic Simulation Algorithm
- 267
- 9.5.5
- Simulation of Linear and Nonlinear Models
- 5
- 22
- 272
- 9.6
- Fractals and Stochastic Modeling
- 281
- 9.7
- Stochastic vs. Deterministic Models
- 285
- IV
- Modeling in Pharmacodynamics
- 289
- 2.3
- 10
- Classical Pharmacodynamics
- 293
- 10.1
- Occupancy Theory in Pharmacology
- 293
- 10.2
- Empirical Pharmacodynamic Models
- 295
- 10.3
- Fick's Laws of Diffusion
- Pharmacokinetic-Dynamic Modeling
- 296
- 10.3.1
- Link Models
- 297
- 10.3.2
- Response Models
- 303
- 10.4
- Other Pharmacodynamic Models
- 23
- 305
- 10.4.1
- The Receptor-Transducer Model
- 305
- 10.4.2
- Irreversible Models
- 305
- 10.4.3
- Time-Variant Models
- 306
- 2.4
- 10.4.4
- Dynamic Nonlinear Models
- 308
- 10.5
- Unification of Pharmacodynamic Models
- 309
- 10.6
- The Population Approach
- 310
- 10.6.1
- Classical Kinetics
- Inter- and Intraindividual Variability
- 310
- 10.6.2
- Models and Software
- 311
- 10.6.3
- Covariates
- 312
- 10.6.4
- Applications
- 27
- 313
- 11
- Nonclassical Pharmacodynamics
- 315
- 11.1
- Nonlinear Concepts in Pharmacodynamics
- 316
- 11.1.1
- Negative Feedback
- 316
- 2.4.1
- 11.1.2
- Delayed Negative Feedback
- 322
- 11.2
- Pharmacodynamic Applications
- 334
- 11.2.1
- Drugs Affecting Endocrine Function
- 334
- 11.2.2
- Passive Transport Processes
- Central Nervous System Drugs
- 344
- 11.2.3
- Cardiovascular Drugs
- 348
- A Stability Analysis
- 353
- B
- Monte Carlo Simulations in Drug Release
- 355
- 28
- C
- Time-Varying Models
- 359
- D
- Probability
- 363
- D.1
- Basic Properties
- 363
- D.2
- 1.1
- 2.4.2
- Expectation, Variance, and Covariance
- 364
- D.3
- Conditional Expectation and Variance
- 365
- D.4
- Generating Functions
- 365
- E
- Convolution in Probability Theory
- Reaction Processes: Diffusion- or Reaction-Limited?
- 367
- F
- Laplace Transform
- 369
- G
- Estimation
- 371
- H
- Theorem on Continuous Functions
- 373
- 29
- 2.4.3
- Carrier-Mediated Transport
- 30
- 2.5
- Fractal-like Kinetics
- 31
- 2.5.1
- Geometric and Statistical Self-Similarity
- Segregation of Reactants
- 31
- 2.5.2
- Time-Dependent Rate Coefficients
- 32
- 2.5.3
- Effective Rate Equations
- 34
- 2.5.4
- Enzyme-Catalyzed Reactions
- 6
- 35
- 2.5.5
- Importance of the Power-Law Expressions
- 36
- 2.6
- Fractional Diffusion Equations
- 36
- 3
- Nonlinear Dynamics
- 39
- 1.2
- 3.1
- Dynamic Systems
- 41
- 3.2
- Attractors
- 42
- 3.3
- Bifurcation
- 43
- 3.4
- Scaling
- Sensitivity to Initial Conditions
- 45
- 3.5
- Reconstruction of the Phase Space
- 47
- 3.6
- Estimation and Control in Chaotic Systems
- 49
- 3.7
- Physiological Systems
- Control code
- 63188951
- Dimensions
- 25 cm
- Extent
- xx, 442 pages
- Isbn
- 9780387281780
- Lccn
- 2005934524
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other control number
- 9780387281780
- Other physical details
- illustrations
- System control number
- (OCoLC)63188951
- Label
- Modeling in biopharmaceutics, pharmacokinetics, and pharmacodynamics : homogeneous and heterogeneous approaches, Panos Macheras, Athanassios Iliadis
- Bibliography note
- Includes bibliographical references (pages 383-432) and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- 8
- 51
- II
- Modeling in Biopharmaceutics
- 53
- 4
- Drug Release
- 57
- 4.1
- The Higuchi Model
- 58
- 1.3
- 4.2
- Systems with Different Geometries
- 60
- 4.3
- The Power-Law Model
- 63
- 4.3.1
- Higuchi Model vs. Power-Law Model
- 64
- 4.4
- Fractal Dimension
- Recent Mechanistic Models
- 67
- 4.5
- Monte Carlo Simulations
- 68
- 4.5.1
- Verification of the Higuchi Law
- 69
- 4.5.2
- Drug Release from Homogeneous Cylinders
- 9
- 70
- 4.5.3
- Release from Fractal Matrices
- 75
- 4.6
- Discernment of Drug Release Kinetics
- 82
- 4.7
- Release from Bioerodible Microparticles
- 83
- 1.4
- 4.8
- Dynamic Aspects in Drug Release
- 86
- 5
- Drug Dissolution
- 89
- 5.1
- The Diffusion Layer Model
- 90
- 5.1.1
- Estimation of Fractal Dimension
- Alternative Classical Dissolution Relationships
- 92
- 5.1.2
- Fractal Considerations in Drug Dissolution
- 93
- 5.1.3
- On the Use of the Weibull Function in Dissolution
- 94
- 5.1.4
- Stochastic Considerations
- 11
- 97
- 5.2
- The Interfacial Barrier Model
- 100
- 5.2.1
- A Continuous Reaction-Limited Dissolution Model
- 100
- 5.2.2
- A Discrete Reaction-Limited Dissolution Model
- 101
- 1.4.1
- 5.2.3
- Modeling Supersaturated Dissolution Data
- 107
- 5.3
- Modeling Random Effects
- 109
- 5.4
- Homogeneity vs. Heterogeneity
- 110
- 5.5
- Self-Similarity Considerations
- Comparison of Dissolution Profiles
- 111
- 6
- Oral Drug Absorption
- 113
- 6.1
- Pseudoequilibrium Models
- 114
- 6.1.1
- The pH-Partition Hypothesis
- 11
- 114
- 6.1.2
- Absorption Potential
- 115
- 6.2
- Mass Balance Approaches
- 117
- 6.2.1
- Macroscopic Approach
- 118
- 1
- 1.4.2
- 6.2.2
- Microscopic Approach
- 121
- 6.3
- Dynamic Models
- 122
- 6.3.1
- Compartmental Models
- 122
- 6.3.2
- Power-Law Scaling
- Convection-Dispersion Models
- 124
- 6.4
- Heterogeneous Approaches
- 129
- 6.4.1
- The Heterogeneous Character of GI Transit
- 129
- 6.4.2
- Is in Vivo Drug Dissolution a Fractal Process?
- 12
- 130
- 6.4.3
- Fractal-like Kinetics in Gastrointestinal Absorption
- 132
- 6.4.4
- The Fractal Nature of Absorption Processes
- 134
- 6.4.5
- Modeling Drug Transit in the Intestines
- 136
- 1.5
- 6.4.6
- Probabilistic Model for Drug Absorption
- 142
- 6.5
- Absorption Models Based on Structure
- 147
- 6.6
- Regulatory Aspects
- 148
- 6.6.1
- Self-Affine Fractals
- Biopharmaceutics Classification of Drugs
- 148
- 6.6.2
- The Problem with the Biowaivers
- 151
- 6.7
- Randomness and Chaotic Behavior
- 158
- III
- Modeling In Pharmacokinetics
- 12
- 161
- 7
- Empirical Models
- 165
- 7.1
- Power Functions and Heterogeneity
- 167
- 7.2
- Heterogeneous Processes
- 169
- 1.6
- 7.2.1
- Distribution, Blood Vessels Network
- 169
- 7.2.2
- Elimination, Liver Structure
- 171
- 7.3
- Fractal Time and Fractal Processes
- 174
- 7.4
- More About Dimensionality
- Modeling Heterogeneity
- 175
- 7.4.1
- Fractal Concepts
- 176
- 7.4.2
- Empirical Concepts
- 177
- 7.5
- Heterogeneity and Time Dependence
- 13
- 178
- 7.6
- Simulation with Empirical Models
- 181
- 8
- Deterministic Compartmental Models
- 183
- 8.1
- Linear Compartmental Models
- 184
- 1.7
- 8.2
- Routes of Administration
- 186
- 8.3
- Time-Concentration Profiles
- 187
- 8.4
- Random Fractional Flow Rates
- 188
- 8.5
- The Geometry of Nature
- Percolation
- Nonlinear Compartmental Models
- 189
- 8.5.1
- The Enzymatic Reaction
- 191
- 8.6
- Complex Deterministic Models
- 193
- 8.6.1
- Geometric Considerations
- 14
- 194
- 8.6.2
- Tracer Washout Curve
- 195
- 8.6.3
- Model for the Circulatory System
- 197
- 8.7
- Compartmental Models and Heterogeneity
- 199
- 2
- 9
- Stochastic Compartmental Models
- 205
- 9.1
- Probabilistic Transfer Models
- 206
- 9.1.2
- The Basic Steps
- 208
- 9.2
- Diffusion and Kinetics
- Retention-Time Distribution Models
- 210
- 9.2.1
- Probabilistic vs. Retention-Time Models
- 210
- 9.2.2
- Markov vs. Semi-Markov Models
- 212
- 9.2.3
- Irreversible Models
- 17
- 214
- 9.2.4
- Reversible Models
- 217
- 9.2.5
- Time-Varying Hazard Rates
- 222
- 9.2.6
- Pseudocompartment Techniques
- 225
- 2.1
- 9.2.7
- A Typical Two-Compartment Model
- 231
- 9.3
- Time-Concentration Profiles
- 235
- 9.3.1
- Routes of Administration
- 236
- 9.3.2
- Random Walks and Regular Diffusion
- Some Typical Drug Administration Schemes
- 237
- 9.3.3
- Time-Amount Functions
- 239
- 9.3.4
- Process Uncertainty or Stochastic Error
- 243
- 9.3.5
- Distribution of Particles and Process Uncertainty
- 18
- 245
- 9.3.6
- Time Profiles of the Model
- 249
- 9.4
- Random Hazard-Rate Models
- 251
- 9.4.1
- Probabilistic Models with Random Hazard Rates
- 253
- 2.2
- 9.4.2
- Retention-Time Models with Random Hazard Rates
- 258
- 9.5
- The Kolmogorov or Master Equations
- 260
- 9.5.1
- Master Equation and Diffusion
- 263
- 9.5.2
- Anomalous Diffusion
- Exact Solution in Matrix Form
- 265
- 9.5.3
- Cumulant Generating Functions
- 265
- 9.5.4
- Stochastic Simulation Algorithm
- 267
- 9.5.5
- Simulation of Linear and Nonlinear Models
- 5
- 22
- 272
- 9.6
- Fractals and Stochastic Modeling
- 281
- 9.7
- Stochastic vs. Deterministic Models
- 285
- IV
- Modeling in Pharmacodynamics
- 289
- 2.3
- 10
- Classical Pharmacodynamics
- 293
- 10.1
- Occupancy Theory in Pharmacology
- 293
- 10.2
- Empirical Pharmacodynamic Models
- 295
- 10.3
- Fick's Laws of Diffusion
- Pharmacokinetic-Dynamic Modeling
- 296
- 10.3.1
- Link Models
- 297
- 10.3.2
- Response Models
- 303
- 10.4
- Other Pharmacodynamic Models
- 23
- 305
- 10.4.1
- The Receptor-Transducer Model
- 305
- 10.4.2
- Irreversible Models
- 305
- 10.4.3
- Time-Variant Models
- 306
- 2.4
- 10.4.4
- Dynamic Nonlinear Models
- 308
- 10.5
- Unification of Pharmacodynamic Models
- 309
- 10.6
- The Population Approach
- 310
- 10.6.1
- Classical Kinetics
- Inter- and Intraindividual Variability
- 310
- 10.6.2
- Models and Software
- 311
- 10.6.3
- Covariates
- 312
- 10.6.4
- Applications
- 27
- 313
- 11
- Nonclassical Pharmacodynamics
- 315
- 11.1
- Nonlinear Concepts in Pharmacodynamics
- 316
- 11.1.1
- Negative Feedback
- 316
- 2.4.1
- 11.1.2
- Delayed Negative Feedback
- 322
- 11.2
- Pharmacodynamic Applications
- 334
- 11.2.1
- Drugs Affecting Endocrine Function
- 334
- 11.2.2
- Passive Transport Processes
- Central Nervous System Drugs
- 344
- 11.2.3
- Cardiovascular Drugs
- 348
- A Stability Analysis
- 353
- B
- Monte Carlo Simulations in Drug Release
- 355
- 28
- C
- Time-Varying Models
- 359
- D
- Probability
- 363
- D.1
- Basic Properties
- 363
- D.2
- 1.1
- 2.4.2
- Expectation, Variance, and Covariance
- 364
- D.3
- Conditional Expectation and Variance
- 365
- D.4
- Generating Functions
- 365
- E
- Convolution in Probability Theory
- Reaction Processes: Diffusion- or Reaction-Limited?
- 367
- F
- Laplace Transform
- 369
- G
- Estimation
- 371
- H
- Theorem on Continuous Functions
- 373
- 29
- 2.4.3
- Carrier-Mediated Transport
- 30
- 2.5
- Fractal-like Kinetics
- 31
- 2.5.1
- Geometric and Statistical Self-Similarity
- Segregation of Reactants
- 31
- 2.5.2
- Time-Dependent Rate Coefficients
- 32
- 2.5.3
- Effective Rate Equations
- 34
- 2.5.4
- Enzyme-Catalyzed Reactions
- 6
- 35
- 2.5.5
- Importance of the Power-Law Expressions
- 36
- 2.6
- Fractional Diffusion Equations
- 36
- 3
- Nonlinear Dynamics
- 39
- 1.2
- 3.1
- Dynamic Systems
- 41
- 3.2
- Attractors
- 42
- 3.3
- Bifurcation
- 43
- 3.4
- Scaling
- Sensitivity to Initial Conditions
- 45
- 3.5
- Reconstruction of the Phase Space
- 47
- 3.6
- Estimation and Control in Chaotic Systems
- 49
- 3.7
- Physiological Systems
- Control code
- 63188951
- Dimensions
- 25 cm
- Extent
- xx, 442 pages
- Isbn
- 9780387281780
- Lccn
- 2005934524
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other control number
- 9780387281780
- Other physical details
- illustrations
- System control number
- (OCoLC)63188951
Subject
- Biopharmaceutics -- Mathematical models
- Biopharmaceutics -- methods
- Biopharmacie -- Modèles mathématiques
- Biopharmacie -- Modèles mathématiques
- Biopharmazie
- Drugs -- Physiological effect | Mathematical models
- Models, Theoretical
- Médicaments -- Effets physiologiques | Modèles mathématiques
- Pharmacocinétique -- Modèles mathématiques
- Pharmacocinétique -- Modèles mathématiques
- Pharmacodynamie - Modèles mathématiques
- Pharmacodynamie -- Modèles mathématiques
- Pharmacokinetics
- Pharmacokinetics -- Mathematical models
- Pharmakodynamik
- Pharmakokinetik
- Biomathematik
Member of
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Modeling-in-biopharmaceutics-pharmacokinetics/hxYoD52ZdQE/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Modeling-in-biopharmaceutics-pharmacokinetics/hxYoD52ZdQE/">Modeling in biopharmaceutics, pharmacokinetics, and pharmacodynamics : homogeneous and heterogeneous approaches, Panos Macheras, Athanassios Iliadis</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Modeling in biopharmaceutics, pharmacokinetics, and pharmacodynamics : homogeneous and heterogeneous approaches, Panos Macheras, Athanassios Iliadis
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Modeling-in-biopharmaceutics-pharmacokinetics/hxYoD52ZdQE/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Modeling-in-biopharmaceutics-pharmacokinetics/hxYoD52ZdQE/">Modeling in biopharmaceutics, pharmacokinetics, and pharmacodynamics : homogeneous and heterogeneous approaches, Panos Macheras, Athanassios Iliadis</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>