The Resource Monomial ideals, computations and applications, Anna M. Bigatti, Philippe Gimenez, Eduardo Sáenz-de-Cabezón, editors
Monomial ideals, computations and applications, Anna M. Bigatti, Philippe Gimenez, Eduardo Sáenz-de-Cabezón, editors
Resource Information
The item Monomial ideals, computations and applications, Anna M. Bigatti, Philippe Gimenez, Eduardo Sáenz-de-Cabezón, editors represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Monomial ideals, computations and applications, Anna M. Bigatti, Philippe Gimenez, Eduardo Sáenz-de-Cabezón, editors represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 1 library branch.
- Summary
- This work covers three important aspects of monomials ideals in the three chapters "Stanley decompositions" by Jürgen Herzog, "Edge ideals" by Adam Van Tuyl and "Local cohomology" by Josep Álvarez Montaner. The chapters, written by top experts, include computer tutorials that emphasize the computational aspects of the respective areas. Monomial ideals and algebras are, in a sense, among the simplest structures in commutative algebra and the main objects of combinatorial commutative algebra. Also, they are of major importance for at least three reasons. Firstly, Gröbner basis theory allows us to treat certain problems on general polynomial ideals by means of monomial ideals. Secondly, the combinatorial structure of monomial ideals connects them to other combinatorial structures and allows us to solve problems on both sides of this correspondence using the techniques of each of the respective areas. And thirdly, the combinatorial nature of monomial ideals also makes them particularly well suited to the development of algorithms to work with them and then generate algorithms for more general structures
- Language
- eng
- Extent
- xi, 194 pages
- Contents
-
- A survey on Stanley depth
- Stanley decompositions using CoCoA
- A beginner's guide to edge and cover ideals
- Edge ideals using Macaulay2
- Local cohomology modules supported on monomial ideals
- Local cohomology using Macaulay2
- Isbn
- 9783642387418
- Label
- Monomial ideals, computations and applications
- Title
- Monomial ideals, computations and applications
- Statement of responsibility
- Anna M. Bigatti, Philippe Gimenez, Eduardo Sáenz-de-Cabezón, editors
- Language
- eng
- Summary
- This work covers three important aspects of monomials ideals in the three chapters "Stanley decompositions" by Jürgen Herzog, "Edge ideals" by Adam Van Tuyl and "Local cohomology" by Josep Álvarez Montaner. The chapters, written by top experts, include computer tutorials that emphasize the computational aspects of the respective areas. Monomial ideals and algebras are, in a sense, among the simplest structures in commutative algebra and the main objects of combinatorial commutative algebra. Also, they are of major importance for at least three reasons. Firstly, Gröbner basis theory allows us to treat certain problems on general polynomial ideals by means of monomial ideals. Secondly, the combinatorial structure of monomial ideals connects them to other combinatorial structures and allows us to solve problems on both sides of this correspondence using the techniques of each of the respective areas. And thirdly, the combinatorial nature of monomial ideals also makes them particularly well suited to the development of algorithms to work with them and then generate algorithms for more general structures
- Cataloging source
- YDXCP
- Dewey number
- 512/.44
- Illustrations
- illustrations
- Index
- no index present
- Literary form
- non fiction
- Nature of contents
- bibliography
- http://library.link/vocab/relatedWorkOrContributorDate
- 1965-
- http://library.link/vocab/relatedWorkOrContributorName
-
- Bigatti, Anna M.
- Gimenez, Philippe
- Sáenz-de-Cabezón, Eduardo
- Series statement
- Lecture notes in mathematics,
- Series volume
- 2083
- http://library.link/vocab/subjectName
-
- Commutative algebra
- Ideals (Algebra)
- Homology theory
- Label
- Monomial ideals, computations and applications, Anna M. Bigatti, Philippe Gimenez, Eduardo Sáenz-de-Cabezón, editors
- Bibliography note
- Includes bibliographical references
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- A survey on Stanley depth -- Stanley decompositions using CoCoA -- A beginner's guide to edge and cover ideals -- Edge ideals using Macaulay2 -- Local cohomology modules supported on monomial ideals -- Local cohomology using Macaulay2
- Control code
- 843532500
- Dimensions
- 24 cm
- Extent
- xi, 194 pages
- Isbn
- 9783642387418
- Lccn
- 2013945178
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- illustrations
- System control number
- (OCoLC)843532500
- Label
- Monomial ideals, computations and applications, Anna M. Bigatti, Philippe Gimenez, Eduardo Sáenz-de-Cabezón, editors
- Bibliography note
- Includes bibliographical references
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- A survey on Stanley depth -- Stanley decompositions using CoCoA -- A beginner's guide to edge and cover ideals -- Edge ideals using Macaulay2 -- Local cohomology modules supported on monomial ideals -- Local cohomology using Macaulay2
- Control code
- 843532500
- Dimensions
- 24 cm
- Extent
- xi, 194 pages
- Isbn
- 9783642387418
- Lccn
- 2013945178
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- illustrations
- System control number
- (OCoLC)843532500
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Monomial-ideals-computations-and-applications/GGJ6zYGcUQM/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Monomial-ideals-computations-and-applications/GGJ6zYGcUQM/">Monomial ideals, computations and applications, Anna M. Bigatti, Philippe Gimenez, Eduardo Sáenz-de-Cabezón, editors</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Monomial ideals, computations and applications, Anna M. Bigatti, Philippe Gimenez, Eduardo Sáenz-de-Cabezón, editors
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Monomial-ideals-computations-and-applications/GGJ6zYGcUQM/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Monomial-ideals-computations-and-applications/GGJ6zYGcUQM/">Monomial ideals, computations and applications, Anna M. Bigatti, Philippe Gimenez, Eduardo Sáenz-de-Cabezón, editors</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>