The Resource Non-Archimedean L-functions of Siegel and Hilbert modular forms, Alexey A. Panchishkin
Non-Archimedean L-functions of Siegel and Hilbert modular forms, Alexey A. Panchishkin
Resource Information
The item Non-Archimedean L-functions of Siegel and Hilbert modular forms, Alexey A. Panchishkin represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Non-Archimedean L-functions of Siegel and Hilbert modular forms, Alexey A. Panchishkin represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 1 library branch.
- Summary
- This book is devoted to the arithmetical theory of Siegel modular forms and their L-functions. The central object are L-functions of classical Siegel modular forms whose special values are studied using the Rankin-Selberg method and the action of certain differential operators on modular forms which have nice arithmetical properties. A new method of p-adic interpolation of these critical values is presented. An important class of p-adic L-functions treated in the present book are p-adic L-functions of Siegel modular forms having logarithmic growth (which were first introduced by Amice, Velu and Vishik in the elliptic modular case when they come from a good supersingular reduction of ellptic curves and abelian varieties). The given construction of these p-adic L-functions uses precise algebraic properties of the arihmetical Shimura differential operator. The book could be very useful for postgraduate students and for non-experts giving a quick access to a rapidly developping domain of algebraic number theory: the arithmetical theory of L-functions and modular forms
- Language
- eng
- Extent
- 1 online resource (157 pages).
- Contents
-
- Content
- Acknowledgement
- 1. Non-Archimedean analytic functions, measures and distributions
- 2. Siegel modular forms and the holomorphic projection operator
- 3. Non-Archimedean standard zeta functions of Siegel modular forms
- 4. Non-Archimedean convolutions of Hilbert modular forms
- References
- Isbn
- 9783662215418
- Label
- Non-Archimedean L-functions of Siegel and Hilbert modular forms
- Title
- Non-Archimedean L-functions of Siegel and Hilbert modular forms
- Statement of responsibility
- Alexey A. Panchishkin
- Subject
-
- Fonctions L
- Formes modulaires
- Formes modulaires
- Forms, Modular
- Forms, Modular
- Forms, Modular
- Forms, Modular
- Functions, Zeta
- Functions, Zeta
- Functions, Zeta
- Functions, Zeta
- Hilbert modular surfaces
- Hilbert modular surfaces
- Hilbert modular surfaces
- Hilbert, Surfaces modulaires de
- L-functions
- Nonstandard mathematical analysis
- Nonstandard mathematical analysis
- Nonstandard mathematical analysis
- Siegel domains
- Siegel domains
- Siegel domains
- Siegel, Domaines de
- Surfaces modulaires de Hilbert
- Analyse mathématique non standard
- Language
- eng
- Summary
- This book is devoted to the arithmetical theory of Siegel modular forms and their L-functions. The central object are L-functions of classical Siegel modular forms whose special values are studied using the Rankin-Selberg method and the action of certain differential operators on modular forms which have nice arithmetical properties. A new method of p-adic interpolation of these critical values is presented. An important class of p-adic L-functions treated in the present book are p-adic L-functions of Siegel modular forms having logarithmic growth (which were first introduced by Amice, Velu and Vishik in the elliptic modular case when they come from a good supersingular reduction of ellptic curves and abelian varieties). The given construction of these p-adic L-functions uses precise algebraic properties of the arihmetical Shimura differential operator. The book could be very useful for postgraduate students and for non-experts giving a quick access to a rapidly developping domain of algebraic number theory: the arithmetical theory of L-functions and modular forms
- Cataloging source
- OCLCE
- http://library.link/vocab/creatorName
- Panchishkin, A. A.
- Dewey number
- 512.73
- Index
- index present
- LC call number
- QA3
- LC item number
- .L33 no.1471
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- Series statement
- Lecture notes in mathematics
- Series volume
- 1471
- http://library.link/vocab/subjectName
-
- Forms, Modular
- Hilbert modular surfaces
- Siegel domains
- Nonstandard mathematical analysis
- Functions, Zeta
- Fonctions L
- Formes modulaires
- Surfaces modulaires de Hilbert
- Forms, Modular
- Functions, Zeta
- Hilbert modular surfaces
- Nonstandard mathematical analysis
- Siegel domains
- L-functions
- Functions, Zeta
- Forms, Modular
- Formes modulaires
- Hilbert, Surfaces modulaires de
- Siegel, Domaines de
- Analyse mathématique non standard
- Label
- Non-Archimedean L-functions of Siegel and Hilbert modular forms, Alexey A. Panchishkin
- Antecedent source
- file reproduced from original
- Bibliography note
- Includes bibliographical references (pages 146-154) and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Content -- Acknowledgement -- 1. Non-Archimedean analytic functions, measures and distributions -- 2. Siegel modular forms and the holomorphic projection operator -- 3. Non-Archimedean standard zeta functions of Siegel modular forms -- 4. Non-Archimedean convolutions of Hilbert modular forms -- References
- Control code
- 654470646
- Dimensions
- unknown
- Extent
- 1 online resource (157 pages).
- File format
- one file format
- Form of item
- online
- Isbn
- 9783662215418
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other control number
- 10.1007/978-3-662-21541-8
- Specific material designation
- remote
- System control number
- (OCoLC)654470646
- Label
- Non-Archimedean L-functions of Siegel and Hilbert modular forms, Alexey A. Panchishkin
- Antecedent source
- file reproduced from original
- Bibliography note
- Includes bibliographical references (pages 146-154) and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Content -- Acknowledgement -- 1. Non-Archimedean analytic functions, measures and distributions -- 2. Siegel modular forms and the holomorphic projection operator -- 3. Non-Archimedean standard zeta functions of Siegel modular forms -- 4. Non-Archimedean convolutions of Hilbert modular forms -- References
- Control code
- 654470646
- Dimensions
- unknown
- Extent
- 1 online resource (157 pages).
- File format
- one file format
- Form of item
- online
- Isbn
- 9783662215418
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other control number
- 10.1007/978-3-662-21541-8
- Specific material designation
- remote
- System control number
- (OCoLC)654470646
Subject
- Fonctions L
- Formes modulaires
- Formes modulaires
- Forms, Modular
- Forms, Modular
- Forms, Modular
- Forms, Modular
- Functions, Zeta
- Functions, Zeta
- Functions, Zeta
- Functions, Zeta
- Hilbert modular surfaces
- Hilbert modular surfaces
- Hilbert modular surfaces
- Hilbert, Surfaces modulaires de
- L-functions
- Nonstandard mathematical analysis
- Nonstandard mathematical analysis
- Nonstandard mathematical analysis
- Siegel domains
- Siegel domains
- Siegel domains
- Siegel, Domaines de
- Surfaces modulaires de Hilbert
- Analyse mathématique non standard
Member of
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Non-Archimedean-L-functions-of-Siegel-and-Hilbert/FdswUfjEjA8/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Non-Archimedean-L-functions-of-Siegel-and-Hilbert/FdswUfjEjA8/">Non-Archimedean L-functions of Siegel and Hilbert modular forms, Alexey A. Panchishkin</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Non-Archimedean L-functions of Siegel and Hilbert modular forms, Alexey A. Panchishkin
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Non-Archimedean-L-functions-of-Siegel-and-Hilbert/FdswUfjEjA8/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Non-Archimedean-L-functions-of-Siegel-and-Hilbert/FdswUfjEjA8/">Non-Archimedean L-functions of Siegel and Hilbert modular forms, Alexey A. Panchishkin</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>