Coverart for item
The Resource Number fields, Daniel A. Marcus ; typeset in Latex by Emanuele Sacco

Number fields, Daniel A. Marcus ; typeset in Latex by Emanuele Sacco

Label
Number fields
Title
Number fields
Statement of responsibility
Daniel A. Marcus ; typeset in Latex by Emanuele Sacco
Creator
Author
Subject
Language
eng
Summary
"Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, "down-to-earth" manner. It thus avoids local methods, for example, and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises"-- Provided by publisher
Member of
Cataloging source
OHX
http://library.link/vocab/creatorDate
1945-
http://library.link/vocab/creatorName
Marcus, Daniel A.
Illustrations
illustrations
Index
index present
LC call number
QA247
LC item number
.M346 2018
Literary form
non fiction
Nature of contents
bibliography
Series statement
Universitext,
http://library.link/vocab/subjectName
  • Algebraic number theory
  • Algebraic fields
  • Algebraic fields
  • Algebraic number theory
Label
Number fields, Daniel A. Marcus ; typeset in Latex by Emanuele Sacco
Instantiates
Publication
Copyright
Bibliography note
Includes bibliographical references and indexes
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
A special case of Fermat's conjecture -- Number fields and number rings -- Prime decomposition in number rings -- Galois theory applied to prime decomposition -- The ideal class group and the unit group -- The distribution of ideals in a number ring -- The Dedekind zeta function and the class number formula -- The distribution of primes and an introduction to class field theory -- Appendix 1: Commutative rings and ideals -- Appendix 2: Galois theory for subfields of c -- Appendix 3: Finite fields and rings -- Appendix 4: Two pages of primes
Control code
1047919979
Dimensions
24 cm.
Edition
Second edition.
Extent
xviii, 203 pages
Isbn
9783319902326
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other control number
9783319902326
Other physical details
illustrations
System control number
(OCoLC)1047919979
Label
Number fields, Daniel A. Marcus ; typeset in Latex by Emanuele Sacco
Publication
Copyright
Bibliography note
Includes bibliographical references and indexes
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
A special case of Fermat's conjecture -- Number fields and number rings -- Prime decomposition in number rings -- Galois theory applied to prime decomposition -- The ideal class group and the unit group -- The distribution of ideals in a number ring -- The Dedekind zeta function and the class number formula -- The distribution of primes and an introduction to class field theory -- Appendix 1: Commutative rings and ideals -- Appendix 2: Galois theory for subfields of c -- Appendix 3: Finite fields and rings -- Appendix 4: Two pages of primes
Control code
1047919979
Dimensions
24 cm.
Edition
Second edition.
Extent
xviii, 203 pages
Isbn
9783319902326
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other control number
9783319902326
Other physical details
illustrations
System control number
(OCoLC)1047919979

Library Locations

    • Mathematical Sciences LibraryBorrow it
      104 Ellis Library, Columbia, MO, 65201, US
      38.944377 -92.326537
Processing Feedback ...