The Resource Ordinary differential equations, by Richard K. Miller, Anthony N. Michel
Ordinary differential equations, by Richard K. Miller, Anthony N. Michel
Resource Information
The item Ordinary differential equations, by Richard K. Miller, Anthony N. Michel represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Ordinary differential equations, by Richard K. Miller, Anthony N. Michel represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 1 library branch.
- Summary
- Acclaimed by IEEE Control Systems Magazine as a welcome addition to books in the field, this self-contained treatment is appropriate for courses in nonlinear system analysis. Geared toward advanced undergraduates and graduate students in mathematics, engineering, and the sciences, its highlight is a scholarly treatment of the stability of dynamical systems
- Language
- eng
- Extent
- xiii, 351 pages
- Note
- Includes index
- Contents
-
- Introduction
- Fundamental theory
- Linear systems
- Boundary value problems
- Stability
- Perturbations of linear systems
- Periodic solutions of two-dimensional systems
- Periodic solutions of systems
- Label
- Ordinary differential equations
- Title
- Ordinary differential equations
- Statement of responsibility
- by Richard K. Miller, Anthony N. Michel
- Language
- eng
- Summary
- Acclaimed by IEEE Control Systems Magazine as a welcome addition to books in the field, this self-contained treatment is appropriate for courses in nonlinear system analysis. Geared toward advanced undergraduates and graduate students in mathematics, engineering, and the sciences, its highlight is a scholarly treatment of the stability of dynamical systems
- Cataloging source
- DLC
- http://library.link/vocab/creatorName
- Miller, Richard K
- Illustrations
- illustrations
- Index
- no index present
- Literary form
- non fiction
- Nature of contents
- bibliography
- http://library.link/vocab/relatedWorkOrContributorName
- Michel, Anthony N
- http://library.link/vocab/subjectName
-
- Differential equations
- Gewöhnliche Differentialgleichung
- Label
- Ordinary differential equations, by Richard K. Miller, Anthony N. Michel
- Note
- Includes index
- Bibliography note
- Bibliography: pages 342-345
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Introduction -- Fundamental theory -- Linear systems -- Boundary value problems -- Stability -- Perturbations of linear systems -- Periodic solutions of two-dimensional systems -- Periodic solutions of systems
- Control code
- 8031958
- Dimensions
- 24 cm
- Extent
- xiii, 351 pages
- Lccn
- 81015006
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- illustrations
- System control number
- (WaOLN)21270
- Label
- Ordinary differential equations, by Richard K. Miller, Anthony N. Michel
- Note
- Includes index
- Bibliography note
- Bibliography: pages 342-345
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Introduction -- Fundamental theory -- Linear systems -- Boundary value problems -- Stability -- Perturbations of linear systems -- Periodic solutions of two-dimensional systems -- Periodic solutions of systems
- Control code
- 8031958
- Dimensions
- 24 cm
- Extent
- xiii, 351 pages
- Lccn
- 81015006
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- illustrations
- System control number
- (WaOLN)21270
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Ordinary-differential-equations-by-Richard-K./L3dbvwPSJvo/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Ordinary-differential-equations-by-Richard-K./L3dbvwPSJvo/">Ordinary differential equations, by Richard K. Miller, Anthony N. Michel</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Ordinary differential equations, by Richard K. Miller, Anthony N. Michel
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Ordinary-differential-equations-by-Richard-K./L3dbvwPSJvo/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Ordinary-differential-equations-by-Richard-K./L3dbvwPSJvo/">Ordinary differential equations, by Richard K. Miller, Anthony N. Michel</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>