Coverart for item
The Resource Reactive separation processes, edited by Santi Kulprathipanja

Reactive separation processes, edited by Santi Kulprathipanja

Label
Reactive separation processes
Title
Reactive separation processes
Statement of responsibility
edited by Santi Kulprathipanja
Contributor
Subject
Language
eng
Cataloging source
DLC
Dewey number
660/.2842
Illustrations
illustrations
Index
index present
LC call number
TP156.S45
LC item number
R43 2002
Literary form
non fiction
Nature of contents
bibliography
http://library.link/vocab/relatedWorkOrContributorName
Kulprathipanja, Santi
http://library.link/vocab/subjectName
Separation (Technology)
Label
Reactive separation processes, edited by Santi Kulprathipanja
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
volume
Carrier category code
nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Advantages
  • 62
  • 3.3.4
  • Esterification
  • 64
  • 3.3.5
  • Transesterification
  • 66
  • 3.3.6
  • Polycarbonates
  • 67
  • 7
  • 3.3.7
  • Nitration
  • 68
  • 3.3.8
  • UOP HF Alkylation Technology
  • 70
  • 3.3.9
  • UOP HF Detergent Alkylate Process
  • 72
  • 3.3.10
  • 1.2.2
  • Oxidation
  • 74
  • 3.3.11
  • Oximation
  • 75
  • 3.3.12
  • Shell Higher Olefin Process (SHOP)
  • 77
  • 3.3.13
  • Hydroformylation
  • Disadvantages
  • 78
  • 3.3.14
  • Modifiers, Phase Transfer Catalysts, and Surfactants
  • 80
  • 3.3.15
  • Dense Gas and Ionic Fluid Applications
  • 86
  • 4
  • Absorption with Reaction
  • Jerry H. Meldon
  • 10
  • 93
  • 4.2
  • Local Mass Transfer Models
  • 94
  • 4.3
  • Mass Transfer with Chemical Reaction
  • 97
  • 4.3.1
  • Irreversible Reaction
  • 97
  • 1.3
  • 4.3.2
  • Reversible Reaction
  • 103
  • 4.3.3
  • Perturbation Methods
  • 104
  • 4.4
  • Simultaneous Absorption of Carbon Dioxide and Hydrogen Sulfide in Alkaline Solutions
  • 107
  • 5
  • Applications Topics
  • Adsorption with Reaction
  • Robert W. Carr, Hemant W. Dandekar
  • 115
  • 5.1.1
  • Applicability
  • 116
  • 5.1.2
  • Attributes
  • 116
  • 5.2
  • 12
  • Reactor Types
  • 117
  • 5.2.1
  • Rotating Cylindrical Annulus Chromatographic Reactors
  • 118
  • 5.2.2
  • Countercurrent Moving-Bed Chromatographic Reactors
  • 120
  • 5.2.3
  • Simulated Countercurrent Moving-Bed Chromatographic Reactors
  • 2
  • 121
  • 5.2.4
  • Pressure-Swing Adsorption Reactors
  • 128
  • 5.2.5
  • The Trickle-Bed Reactor
  • 130
  • 5.3
  • Issues in Adsorbent/Catalyst and Reactor Design
  • 131
  • Reactive Distillation
  • 5.3.1
  • Adsorption Issues
  • 131
  • 5.3.2
  • Reaction Issues
  • 132
  • 5.3.3
  • Particle Design
  • 132
  • 5.4
  • 1
  • Gavin P. Towler, Stanley J. Frey
  • Applications
  • 133
  • 5.4.1
  • Equilibrium-Limited Reactions
  • 133
  • 5.4.2
  • Selectivity-Limited Reactions
  • 144
  • 5.5
  • Process Evaluation
  • 18
  • 150
  • 5.5.1
  • Impact on Process Flowsheet
  • 150
  • 5.5.2
  • Economic Impact
  • 151
  • 6
  • Reactive Membrane Separation
  • Jose G. Sanchez Marcano, Theodore T. Tsotsis
  • 2.2
  • 155
  • 6.2
  • Catalytic Reactive Separation Processes
  • 161
  • 6.2.1
  • Dehydrogenation Reactions
  • 161
  • 6.2.2
  • Hydrogenation Reactions
  • 164
  • Industrial Applications
  • 6.2.3
  • Oxidation Reactions
  • 165
  • 6.2.4
  • Other High-Temperature Applications
  • 172
  • 6.2.5
  • Economic Considerations
  • 176
  • 6.2.6
  • 20
  • Emerging Applications
  • 178
  • 6.3
  • Pervaporation Membrane Reactors
  • 181
  • 6.4
  • Membrane-Based Reactive Separations for Biological Processes
  • 183
  • 6.5
  • Environmental Applications of Membrane Bioreactors
  • 2.2.1
  • 189
  • 6.6
  • Modeling of Membrane-Based Reactive Separation Processes
  • 191
  • 7
  • Reactive Crystallization
  • Vaibhav V. Kelkar, Ketan D. Samant, Ka M. Ng
  • 209
  • 7.2
  • Solid-Liquid Phase Diagrams with Reactions
  • Esterification
  • 210
  • 7.2.1
  • Generation of Phase Diagrams
  • 210
  • 7.2.2
  • Example Phase Diagrams
  • 211
  • 7.2.3
  • Representation of High-Dimensional Phase Diagrams
  • 212
  • 20
  • 7.2.4
  • Process Synthesis Based on Phase Diagrams
  • 216
  • 7.3
  • Crystallization Kinetics
  • 218
  • 7.3.1
  • Kinetics of Nucleation
  • 219
  • 7.3.2
  • 2.2.2
  • Kinetics of Crystal Growth
  • 221
  • 7.4
  • The Population Balance
  • 224
  • 7.5
  • Generic Model for a Reactive Crystallizer
  • 226
  • 7.6
  • Mixing in Reactive Crystallizers
  • Etherification
  • 229
  • 7.6.1
  • Experimental Studies
  • 231
  • 7.6.2
  • Modeling of Turbulent Mixing in Reactive Crystallizers
  • 234
  • 7.6.3
  • Operating Regimes
  • 237
  • Reactive Separation Processes
  • 22
  • 7.6.4
  • Effect of Operating Conditions on Crystal Attributes
  • 239
  • 7.6.5
  • Choice of Operating Regimes
  • 241
  • 2.3
  • Theory
  • 25
  • 2.3.1
  • Equilibrium Behavior
  • 25
  • 2.3.2
  • Kinetically Limited Behavior
  • 28
  • William A. Leet, Santi Kulprathipanja
  • 2.4
  • Modeling and Design
  • 33
  • 2.4.1
  • Equilibrium Modeling
  • 33
  • 2.4.2
  • Rate-Limited Modeling
  • 35
  • 2.5
  • 1
  • Practical Design Considerations
  • 36
  • 2.5.1
  • Installation, Containment, and Removal of the Catalyst
  • 37
  • 2.5.2
  • Design for Good Reactive Phase Contact with the Catalyst
  • 38
  • 2.5.3
  • Design for Liquid-Vapor Contacting Through the Reactive Zone
  • 1.2
  • 39
  • 2.5.4
  • Design for Proper Pressure Drop Through the Reactive Zone
  • 39
  • 2.5.5
  • Design for Proper Liquid Hold-Up
  • 40
  • 2.5.6
  • Design for Catalyst Deactivation
  • 40
  • Advantages and Disadvantages
  • 2.6
  • Commercially Proven Equipment Technology
  • 41
  • 2.6.1
  • Chemical Research & Licensing (CR & L) Catalyst Bales
  • 41
  • 2.6.2
  • Koch-Glitsch, Inc. Catalyst-Containing Structured Packing
  • 42
  • 2.6.3
  • 6
  • Eastman Chemical High Liquid Hold-up Trays
  • 45
  • 2.6.4
  • Other Leading Reactive Distillation Equipment Concepts
  • 45
  • 3
  • Extraction with Reaction
  • Vincent Van Brunt, Jeffrey S. Kanel
  • 51
  • 3.2
  • 1.2.1
  • Hydrometallurgical Separations
  • 52
  • 3.3
  • Homogeneous Reactions: Organic Separations
  • 57
  • 3.3.2
  • Hydrolysis
  • 58
  • 3.3.3
  • Saponification
Control code
45583416
Dimensions
24 cm
Extent
xvi, 251 pages
Isbn
9781560328254
Isbn Type
(alk. paper)
Lccn
00067814
Media category
unmediated
Media MARC source
rdamedia
Media type code
n
Other physical details
illustrations
Label
Reactive separation processes, edited by Santi Kulprathipanja
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
volume
Carrier category code
nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Advantages
  • 62
  • 3.3.4
  • Esterification
  • 64
  • 3.3.5
  • Transesterification
  • 66
  • 3.3.6
  • Polycarbonates
  • 67
  • 7
  • 3.3.7
  • Nitration
  • 68
  • 3.3.8
  • UOP HF Alkylation Technology
  • 70
  • 3.3.9
  • UOP HF Detergent Alkylate Process
  • 72
  • 3.3.10
  • 1.2.2
  • Oxidation
  • 74
  • 3.3.11
  • Oximation
  • 75
  • 3.3.12
  • Shell Higher Olefin Process (SHOP)
  • 77
  • 3.3.13
  • Hydroformylation
  • Disadvantages
  • 78
  • 3.3.14
  • Modifiers, Phase Transfer Catalysts, and Surfactants
  • 80
  • 3.3.15
  • Dense Gas and Ionic Fluid Applications
  • 86
  • 4
  • Absorption with Reaction
  • Jerry H. Meldon
  • 10
  • 93
  • 4.2
  • Local Mass Transfer Models
  • 94
  • 4.3
  • Mass Transfer with Chemical Reaction
  • 97
  • 4.3.1
  • Irreversible Reaction
  • 97
  • 1.3
  • 4.3.2
  • Reversible Reaction
  • 103
  • 4.3.3
  • Perturbation Methods
  • 104
  • 4.4
  • Simultaneous Absorption of Carbon Dioxide and Hydrogen Sulfide in Alkaline Solutions
  • 107
  • 5
  • Applications Topics
  • Adsorption with Reaction
  • Robert W. Carr, Hemant W. Dandekar
  • 115
  • 5.1.1
  • Applicability
  • 116
  • 5.1.2
  • Attributes
  • 116
  • 5.2
  • 12
  • Reactor Types
  • 117
  • 5.2.1
  • Rotating Cylindrical Annulus Chromatographic Reactors
  • 118
  • 5.2.2
  • Countercurrent Moving-Bed Chromatographic Reactors
  • 120
  • 5.2.3
  • Simulated Countercurrent Moving-Bed Chromatographic Reactors
  • 2
  • 121
  • 5.2.4
  • Pressure-Swing Adsorption Reactors
  • 128
  • 5.2.5
  • The Trickle-Bed Reactor
  • 130
  • 5.3
  • Issues in Adsorbent/Catalyst and Reactor Design
  • 131
  • Reactive Distillation
  • 5.3.1
  • Adsorption Issues
  • 131
  • 5.3.2
  • Reaction Issues
  • 132
  • 5.3.3
  • Particle Design
  • 132
  • 5.4
  • 1
  • Gavin P. Towler, Stanley J. Frey
  • Applications
  • 133
  • 5.4.1
  • Equilibrium-Limited Reactions
  • 133
  • 5.4.2
  • Selectivity-Limited Reactions
  • 144
  • 5.5
  • Process Evaluation
  • 18
  • 150
  • 5.5.1
  • Impact on Process Flowsheet
  • 150
  • 5.5.2
  • Economic Impact
  • 151
  • 6
  • Reactive Membrane Separation
  • Jose G. Sanchez Marcano, Theodore T. Tsotsis
  • 2.2
  • 155
  • 6.2
  • Catalytic Reactive Separation Processes
  • 161
  • 6.2.1
  • Dehydrogenation Reactions
  • 161
  • 6.2.2
  • Hydrogenation Reactions
  • 164
  • Industrial Applications
  • 6.2.3
  • Oxidation Reactions
  • 165
  • 6.2.4
  • Other High-Temperature Applications
  • 172
  • 6.2.5
  • Economic Considerations
  • 176
  • 6.2.6
  • 20
  • Emerging Applications
  • 178
  • 6.3
  • Pervaporation Membrane Reactors
  • 181
  • 6.4
  • Membrane-Based Reactive Separations for Biological Processes
  • 183
  • 6.5
  • Environmental Applications of Membrane Bioreactors
  • 2.2.1
  • 189
  • 6.6
  • Modeling of Membrane-Based Reactive Separation Processes
  • 191
  • 7
  • Reactive Crystallization
  • Vaibhav V. Kelkar, Ketan D. Samant, Ka M. Ng
  • 209
  • 7.2
  • Solid-Liquid Phase Diagrams with Reactions
  • Esterification
  • 210
  • 7.2.1
  • Generation of Phase Diagrams
  • 210
  • 7.2.2
  • Example Phase Diagrams
  • 211
  • 7.2.3
  • Representation of High-Dimensional Phase Diagrams
  • 212
  • 20
  • 7.2.4
  • Process Synthesis Based on Phase Diagrams
  • 216
  • 7.3
  • Crystallization Kinetics
  • 218
  • 7.3.1
  • Kinetics of Nucleation
  • 219
  • 7.3.2
  • 2.2.2
  • Kinetics of Crystal Growth
  • 221
  • 7.4
  • The Population Balance
  • 224
  • 7.5
  • Generic Model for a Reactive Crystallizer
  • 226
  • 7.6
  • Mixing in Reactive Crystallizers
  • Etherification
  • 229
  • 7.6.1
  • Experimental Studies
  • 231
  • 7.6.2
  • Modeling of Turbulent Mixing in Reactive Crystallizers
  • 234
  • 7.6.3
  • Operating Regimes
  • 237
  • Reactive Separation Processes
  • 22
  • 7.6.4
  • Effect of Operating Conditions on Crystal Attributes
  • 239
  • 7.6.5
  • Choice of Operating Regimes
  • 241
  • 2.3
  • Theory
  • 25
  • 2.3.1
  • Equilibrium Behavior
  • 25
  • 2.3.2
  • Kinetically Limited Behavior
  • 28
  • William A. Leet, Santi Kulprathipanja
  • 2.4
  • Modeling and Design
  • 33
  • 2.4.1
  • Equilibrium Modeling
  • 33
  • 2.4.2
  • Rate-Limited Modeling
  • 35
  • 2.5
  • 1
  • Practical Design Considerations
  • 36
  • 2.5.1
  • Installation, Containment, and Removal of the Catalyst
  • 37
  • 2.5.2
  • Design for Good Reactive Phase Contact with the Catalyst
  • 38
  • 2.5.3
  • Design for Liquid-Vapor Contacting Through the Reactive Zone
  • 1.2
  • 39
  • 2.5.4
  • Design for Proper Pressure Drop Through the Reactive Zone
  • 39
  • 2.5.5
  • Design for Proper Liquid Hold-Up
  • 40
  • 2.5.6
  • Design for Catalyst Deactivation
  • 40
  • Advantages and Disadvantages
  • 2.6
  • Commercially Proven Equipment Technology
  • 41
  • 2.6.1
  • Chemical Research & Licensing (CR & L) Catalyst Bales
  • 41
  • 2.6.2
  • Koch-Glitsch, Inc. Catalyst-Containing Structured Packing
  • 42
  • 2.6.3
  • 6
  • Eastman Chemical High Liquid Hold-up Trays
  • 45
  • 2.6.4
  • Other Leading Reactive Distillation Equipment Concepts
  • 45
  • 3
  • Extraction with Reaction
  • Vincent Van Brunt, Jeffrey S. Kanel
  • 51
  • 3.2
  • 1.2.1
  • Hydrometallurgical Separations
  • 52
  • 3.3
  • Homogeneous Reactions: Organic Separations
  • 57
  • 3.3.2
  • Hydrolysis
  • 58
  • 3.3.3
  • Saponification
Control code
45583416
Dimensions
24 cm
Extent
xvi, 251 pages
Isbn
9781560328254
Isbn Type
(alk. paper)
Lccn
00067814
Media category
unmediated
Media MARC source
rdamedia
Media type code
n
Other physical details
illustrations

Library Locations

    • Engineering Library & Technology CommonsBorrow it
      W2001 Lafferre Hall, Columbia, MO, 65211, US
      38.946102 -92.330125
Processing Feedback ...