Coverart for item
The Resource Scaling of structural strength, Zdeněk P. Bažant

Scaling of structural strength, Zdeněk P. Bažant

Label
Scaling of structural strength
Title
Scaling of structural strength
Statement of responsibility
Zdeněk P. Bažant
Creator
Subject
Language
eng
Cataloging source
TEF
http://library.link/vocab/creatorName
Bažant, Z. P
Illustrations
illustrations
Index
index present
LC call number
TA645
LC item number
.B358 2002
Literary form
non fiction
Nature of contents
bibliography
http://library.link/vocab/subjectName
  • Structural analysis (Engineering)
  • Strength of materials
  • Scaling laws (Statistical physics)
Label
Scaling of structural strength, Zdeněk P. Bažant
Instantiates
Publication
Note
Originally published: London : Penton, 2001
Bibliography note
Includes bibliographical references (p. [231]-267) and indexes
Contents
  • 6
  • 99
  • 4.5.
  • Steel-Concrete Composite Beams and Compound Size Effect
  • 101
  • 4.6.
  • Size Effect Formulae for Concrete Design Codes
  • 110
  • 4.7.
  • Size Effect Hidden in Excessive Dead Load Factor in Codes
  • 114
  • 1.4.
  • 4.8.
  • No-Tension Design of Concrete or Rock from the Size Efffect Viewpoint
  • 117
  • 5
  • Energetic Scaling of Compression Fracture and Further Applications to Concrete, Rock and Composites
  • 121
  • 5.1.
  • Propagation of Damage Band Under Compression
  • 121
  • 5.2.
  • Basic Theories of Size Effect
  • Size Effect in Reinforced Concrete Columns
  • 124
  • 5.3.
  • Fracturing Truss (Strut-and-Tie) Model for Shear Failure of Reinforced Concrete
  • 130
  • 5.4.
  • Breakout of Boreholes in Rock
  • 132
  • 5.5.
  • Asymptotic Equivalent LEFM Analysis for Cracks with Residual Bridging Stress
  • 10
  • 133
  • 5.6.
  • Application to Compression Kink Bands in Fiber Composites
  • 134
  • 5.7.
  • Effect of Material Orthotropy
  • 135
  • 6
  • Scaling via J-Integral, with Application to Kink Bands in Fiber Composites
  • 137
  • 1.5.
  • 6.1.
  • J-Integral Analysis of Size Effect on Kink Band Failures
  • 137
  • 6.2.
  • J-integral Calculations
  • 140
  • 6.3.
  • Case of Long Kink Band
  • 144
  • 6.4.
  • Power Scaling in Absence of Characteristic Length
  • Failure at the Start of Kink Band from a Notch or Stress-Free Crack
  • 145
  • 6.5.
  • Comparison with Size Effect Tests of Kink Band Failures
  • 147
  • 7
  • Time Dependence, Repeated Loads and Energy Absorption Capacity
  • 151
  • 7.1.
  • Influence of Loading Rate on Size Effect
  • 11
  • 151
  • 7.2.
  • Size Effect on Fatigue Crack Growth
  • 154
  • 7.3.
  • Wave Propagation and Effect of Viscosity
  • 156
  • 7.4.
  • Ductility and Energy Absorption Capacity of Structures
  • 157
  • 1.6.
  • 8
  • Computational Approaches to Quasibrittle Fracture and Its Scaling
  • 165
  • 8.1.
  • Eigenvalue Analysis of Size Effect via Cohesive (Fictitious) Crack Model
  • 165
  • 8.2.
  • Microplane Model
  • 167
  • 8.3.
  • Transitional Size Effect Bridging Power Laws for Different Scales
  • Spectrum of Distributed Damage Models Capable of Reproducing Size Effect
  • 169
  • 8.4.
  • Simple, Practical Approaches
  • 170
  • 8.5.
  • Nonlocal Concept and Its Physical Justification
  • 171
  • 8.6.
  • Prevention of Spurious Localization of Damage
  • 13
  • 172
  • 8.7.
  • Discrete Elements, Lattice and Random Particle Models
  • 174
  • 9
  • New Asymptotic Scaling Analysis of Cohesive Crack Model and Smeared-Tip Method
  • 177
  • 9.1.
  • Limitations of Cohesive Crack Model
  • 179
  • 1.1.
  • 1.7.
  • 9.2.
  • K-Version of Smeared-Tip Method for Cohesive Fracture
  • 182
  • 9.3.
  • Nonstandard Cohesive Crack Model Defined by a Fixed K-Profile
  • 185
  • 9.4.
  • Asymptotic Scaling Analysis
  • 189
  • 9.4.1.
  • Deductions from Dimensional Analysis
  • Case 1. Positive Geometry with Notch or Stress-Free Initial Crack, for Fixed K-Density (g[subscript 0]> 0, g'[subscript 0]> 0)
  • 189
  • 9.4.2.
  • Case 2. Fracture Initiation from Smooth Surface, for Fixed K-Density (g[subscript 0] = 0, g'[subscript 0]> 0)
  • 195
  • 9.4.3.
  • Cases 1 and 2 for Standard Cohesive Crack Model or First Three Terms of Asymptotic Expansion
  • 198
  • 9.4.4.
  • Case 3. Negative-Positive Geometry Transition (g[subscript 0]> 0, g'[subscript 0] = 0, g"[subscript 0]> 0)
  • 17
  • 199
  • 9.5.
  • Small-Size Asymptotics of Cohesive Crack Model
  • 204
  • 9.6.
  • Nonlocal LEFM -- A Simple Approach to Cohesive Fracture and Its Scaling
  • 206
  • 9.7.
  • Broad-Range Size Effect Law and Its Dirichlet Series Expansion
  • 208
  • 1.8.
  • 9.8.
  • Size Effect Law Anchored in Both Small and Large Size Asymptotics
  • 213
  • 9.9.
  • Recapitulation
  • 215
  • 10
  • Size Effect at Continuum Limit on Approach to Atomic Lattice Scale
  • 219
  • 10.1.
  • Stability of Structures and Size Effect
  • Scaling of Dislocation Based Strain-Gradient Plasticity
  • 219
  • 11
  • Future Perspectives
  • 229
  • 19
  • 2
  • Asymptotic Analysis of Size Effect
  • 21
  • 2.1.
  • Nature of Problem and Approach
  • Asymptotic Analysis of Size Effect in Structures with Notches or Large Cracks
  • 21
  • 2.2.
  • Energetic Size Effect Law and Its Asymptotic Matching Character
  • 25
  • 2.3.
  • Size Effect Law in Terms of LEFM Energy Release Function
  • 27
  • 2.4.
  • Use of J-Integral for Asymptotic Scaling Analysis
  • 1
  • 27
  • 2.5.
  • Identification of Fracture Parameters from Size Effect Tests
  • 29
  • 2.6.
  • Validation by Fracture Test Data and Numerical Simulation
  • 33
  • 2.7.
  • Size Effect for Crack Initiation via Energy Release
  • 38
  • 1.2.
  • 2.8.
  • Stress Redistribution Caused by Boundary Layer of Cracking
  • 42
  • 2.9.
  • Strain Gradient Effect on Failures at Crack Initiation
  • 45
  • 2.10.
  • Universal Size Effect Law
  • 46
  • 2.11.
  • Classical History
  • Asymptotic Scaling and Interaction Diagram for the Case of Several Loads
  • 48
  • 2.12.
  • Size Effect on Approach to Zero Size
  • 50
  • 3
  • Randomness and Disorder
  • 53
  • 3.1.
  • Is Weibull Statistical Theory Applicable to Quasibrittle Structures?
  • 3
  • 53
  • 3.2.
  • Nonlocal Probabilistic Theory of Size Effect
  • 57
  • 3.3.
  • Energetic-Statistical Formula for Size Effect for Failures at Crack Initiation
  • 62
  • 3.4.
  • Size Effect Ensuing from J-Integral for Randomly Located Cracks
  • 67
  • 1.3.
  • 3.5.
  • Could Fracture Fractality Be the Cause of Size Effect?
  • 69
  • 3.6.
  • Could Lacunar Fractality of Microcracks Be the Cause of Size Effect?
  • 72
  • 4
  • Energetic Scaling for Sea Ice and Concrete Structures
  • 77
  • 4.1.
  • Recent Developments in Quasibrittle Materials
  • Scaling of Fracture of Floating Sea Ice Plates
  • 77
  • 4.2.
  • Size Effect on Softening Inelastic Hinges in Beams and Plates
  • 89
  • 4.3.
  • Size Effect in Beams and Frames Failing by Softening Hinges
  • 93
  • 4.4.
  • Size Effect in Floating Ice Subjected to Line Load
Control code
50251173
Dimensions
25 cm.
Extent
xii, 280 p.
Isbn
9781560329848
Other physical details
ill.
Label
Scaling of structural strength, Zdeněk P. Bažant
Publication
Note
Originally published: London : Penton, 2001
Bibliography note
Includes bibliographical references (p. [231]-267) and indexes
Contents
  • 6
  • 99
  • 4.5.
  • Steel-Concrete Composite Beams and Compound Size Effect
  • 101
  • 4.6.
  • Size Effect Formulae for Concrete Design Codes
  • 110
  • 4.7.
  • Size Effect Hidden in Excessive Dead Load Factor in Codes
  • 114
  • 1.4.
  • 4.8.
  • No-Tension Design of Concrete or Rock from the Size Efffect Viewpoint
  • 117
  • 5
  • Energetic Scaling of Compression Fracture and Further Applications to Concrete, Rock and Composites
  • 121
  • 5.1.
  • Propagation of Damage Band Under Compression
  • 121
  • 5.2.
  • Basic Theories of Size Effect
  • Size Effect in Reinforced Concrete Columns
  • 124
  • 5.3.
  • Fracturing Truss (Strut-and-Tie) Model for Shear Failure of Reinforced Concrete
  • 130
  • 5.4.
  • Breakout of Boreholes in Rock
  • 132
  • 5.5.
  • Asymptotic Equivalent LEFM Analysis for Cracks with Residual Bridging Stress
  • 10
  • 133
  • 5.6.
  • Application to Compression Kink Bands in Fiber Composites
  • 134
  • 5.7.
  • Effect of Material Orthotropy
  • 135
  • 6
  • Scaling via J-Integral, with Application to Kink Bands in Fiber Composites
  • 137
  • 1.5.
  • 6.1.
  • J-Integral Analysis of Size Effect on Kink Band Failures
  • 137
  • 6.2.
  • J-integral Calculations
  • 140
  • 6.3.
  • Case of Long Kink Band
  • 144
  • 6.4.
  • Power Scaling in Absence of Characteristic Length
  • Failure at the Start of Kink Band from a Notch or Stress-Free Crack
  • 145
  • 6.5.
  • Comparison with Size Effect Tests of Kink Band Failures
  • 147
  • 7
  • Time Dependence, Repeated Loads and Energy Absorption Capacity
  • 151
  • 7.1.
  • Influence of Loading Rate on Size Effect
  • 11
  • 151
  • 7.2.
  • Size Effect on Fatigue Crack Growth
  • 154
  • 7.3.
  • Wave Propagation and Effect of Viscosity
  • 156
  • 7.4.
  • Ductility and Energy Absorption Capacity of Structures
  • 157
  • 1.6.
  • 8
  • Computational Approaches to Quasibrittle Fracture and Its Scaling
  • 165
  • 8.1.
  • Eigenvalue Analysis of Size Effect via Cohesive (Fictitious) Crack Model
  • 165
  • 8.2.
  • Microplane Model
  • 167
  • 8.3.
  • Transitional Size Effect Bridging Power Laws for Different Scales
  • Spectrum of Distributed Damage Models Capable of Reproducing Size Effect
  • 169
  • 8.4.
  • Simple, Practical Approaches
  • 170
  • 8.5.
  • Nonlocal Concept and Its Physical Justification
  • 171
  • 8.6.
  • Prevention of Spurious Localization of Damage
  • 13
  • 172
  • 8.7.
  • Discrete Elements, Lattice and Random Particle Models
  • 174
  • 9
  • New Asymptotic Scaling Analysis of Cohesive Crack Model and Smeared-Tip Method
  • 177
  • 9.1.
  • Limitations of Cohesive Crack Model
  • 179
  • 1.1.
  • 1.7.
  • 9.2.
  • K-Version of Smeared-Tip Method for Cohesive Fracture
  • 182
  • 9.3.
  • Nonstandard Cohesive Crack Model Defined by a Fixed K-Profile
  • 185
  • 9.4.
  • Asymptotic Scaling Analysis
  • 189
  • 9.4.1.
  • Deductions from Dimensional Analysis
  • Case 1. Positive Geometry with Notch or Stress-Free Initial Crack, for Fixed K-Density (g[subscript 0]> 0, g'[subscript 0]> 0)
  • 189
  • 9.4.2.
  • Case 2. Fracture Initiation from Smooth Surface, for Fixed K-Density (g[subscript 0] = 0, g'[subscript 0]> 0)
  • 195
  • 9.4.3.
  • Cases 1 and 2 for Standard Cohesive Crack Model or First Three Terms of Asymptotic Expansion
  • 198
  • 9.4.4.
  • Case 3. Negative-Positive Geometry Transition (g[subscript 0]> 0, g'[subscript 0] = 0, g"[subscript 0]> 0)
  • 17
  • 199
  • 9.5.
  • Small-Size Asymptotics of Cohesive Crack Model
  • 204
  • 9.6.
  • Nonlocal LEFM -- A Simple Approach to Cohesive Fracture and Its Scaling
  • 206
  • 9.7.
  • Broad-Range Size Effect Law and Its Dirichlet Series Expansion
  • 208
  • 1.8.
  • 9.8.
  • Size Effect Law Anchored in Both Small and Large Size Asymptotics
  • 213
  • 9.9.
  • Recapitulation
  • 215
  • 10
  • Size Effect at Continuum Limit on Approach to Atomic Lattice Scale
  • 219
  • 10.1.
  • Stability of Structures and Size Effect
  • Scaling of Dislocation Based Strain-Gradient Plasticity
  • 219
  • 11
  • Future Perspectives
  • 229
  • 19
  • 2
  • Asymptotic Analysis of Size Effect
  • 21
  • 2.1.
  • Nature of Problem and Approach
  • Asymptotic Analysis of Size Effect in Structures with Notches or Large Cracks
  • 21
  • 2.2.
  • Energetic Size Effect Law and Its Asymptotic Matching Character
  • 25
  • 2.3.
  • Size Effect Law in Terms of LEFM Energy Release Function
  • 27
  • 2.4.
  • Use of J-Integral for Asymptotic Scaling Analysis
  • 1
  • 27
  • 2.5.
  • Identification of Fracture Parameters from Size Effect Tests
  • 29
  • 2.6.
  • Validation by Fracture Test Data and Numerical Simulation
  • 33
  • 2.7.
  • Size Effect for Crack Initiation via Energy Release
  • 38
  • 1.2.
  • 2.8.
  • Stress Redistribution Caused by Boundary Layer of Cracking
  • 42
  • 2.9.
  • Strain Gradient Effect on Failures at Crack Initiation
  • 45
  • 2.10.
  • Universal Size Effect Law
  • 46
  • 2.11.
  • Classical History
  • Asymptotic Scaling and Interaction Diagram for the Case of Several Loads
  • 48
  • 2.12.
  • Size Effect on Approach to Zero Size
  • 50
  • 3
  • Randomness and Disorder
  • 53
  • 3.1.
  • Is Weibull Statistical Theory Applicable to Quasibrittle Structures?
  • 3
  • 53
  • 3.2.
  • Nonlocal Probabilistic Theory of Size Effect
  • 57
  • 3.3.
  • Energetic-Statistical Formula for Size Effect for Failures at Crack Initiation
  • 62
  • 3.4.
  • Size Effect Ensuing from J-Integral for Randomly Located Cracks
  • 67
  • 1.3.
  • 3.5.
  • Could Fracture Fractality Be the Cause of Size Effect?
  • 69
  • 3.6.
  • Could Lacunar Fractality of Microcracks Be the Cause of Size Effect?
  • 72
  • 4
  • Energetic Scaling for Sea Ice and Concrete Structures
  • 77
  • 4.1.
  • Recent Developments in Quasibrittle Materials
  • Scaling of Fracture of Floating Sea Ice Plates
  • 77
  • 4.2.
  • Size Effect on Softening Inelastic Hinges in Beams and Plates
  • 89
  • 4.3.
  • Size Effect in Beams and Frames Failing by Softening Hinges
  • 93
  • 4.4.
  • Size Effect in Floating Ice Subjected to Line Load
Control code
50251173
Dimensions
25 cm.
Extent
xii, 280 p.
Isbn
9781560329848
Other physical details
ill.

Library Locations

    • Engineering Library & Technology CommonsBorrow it
      W2001 Lafferre Hall, Columbia, MO, 65211, US
      38.946102 -92.330125
Processing Feedback ...