Coverart for item
The Resource Silicon technologies : ion implantation and thermal treatment, edited by Annie Baudrant

Silicon technologies : ion implantation and thermal treatment, edited by Annie Baudrant

Label
Silicon technologies : ion implantation and thermal treatment
Title
Silicon technologies
Title remainder
ion implantation and thermal treatment
Statement of responsibility
edited by Annie Baudrant
Contributor
Subject
Language
eng
Summary
The main purpose of this book is to remind new engineers in silicon foundry, the fundamental physical and chemical rules in major Front end treatments: oxidation, epitaxy, ion implantation and impurities diffusion
Member of
Cataloging source
N$T
Dewey number
621.3815/2
Illustrations
illustrations
Index
index present
LC call number
TK7871.85
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorName
Baudrant, Annie
http://library.link/vocab/subjectName
  • Semiconductor doping
  • Ion implantation
  • Semiconductors
  • TECHNOLOGY & ENGINEERING
  • TECHNOLOGY & ENGINEERING
  • Ion implantation
  • Semiconductor doping
  • Semiconductors
Label
Silicon technologies : ion implantation and thermal treatment, edited by Annie Baudrant
Instantiates
Publication
Note
Title from PDF title page (viewed on Feb. 28, 2013)
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Cover; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. Silicon and Silicon Carbide Oxidation; 1.1. Introduction; 1.2. Overview of the various oxidation techniques; 1.2.1. General information; 1.2.2. Most frequently used methods in the semiconductor industry; 1.2.3. Other methods; 1.3. Some physical properties of silica; 1.3.1. The silica structure; 1.3.2. Three useful parameters of silica; 1.3.3. Transport properties in silica; 1.4. Equations of atomic transport during oxidation; 1.4.1. Transport equations in the general case
  • 1.5.5. Experimental results and conclusions on the transport mechanisms during the anodic oxidation of silicon1.5.6. Important experimental results from dry SiC thermal oxidation; 1.6. Transport equations in the case of thermal oxidation; 1.6.1. General information on flux and on growth kinetics; 1.6.2. Flux calculation for neutral mobile species; 1.6.3. Flux calculation for ion mobile species; 1.7. Deal and Grove theory of thermal oxidation; 1.7.1. Flux calculation; 1.7.2. Growth kinetics equations; 1.7.3. Remarks on the fluctuations of the oxidation constants kP and kL
  • 1.7.4. Determination of the oxidation parameters from experimental results1.7.5. Confrontation of the Deal and Grove theory with experimental results; 1.7.6. Conclusions on the Deal and Grove theory; 1.8. Theory of thermal oxidation under water vapor of silicon; 1.8.1. Concentration profiles expected for H2O; 1.8.2. Concentration profiles expected for the OH groups; 1.8.3. Concentration profiles expected for H2; 1.8.4. Concentration profiles expected for H; 1.8.5. Comparison of the expected and the experimental profiles; 1.8.6. Wolters theory
  • 1.9. Kinetics of growth in O2 for oxide films < 30 nm1.9.1. Introduction; 1.9.2. Oxidation models of thin films; 1.9.3. Case of ultra-thin films (< 5 nm); 1.9.4. On line simulator; 1.9.5. Kinetics and models of SiC oxidation; 1.10. Fluctuations of the oxidation constants under experimental conditions; 1.10.1. Role of the pressure; 1.10.2. Role of the temperature; 1.10.3. Role of the crystal direction; 1.10.4. Role of doping; 1.11. Conclusion; 1.12. Bibliography; Chapter 2. Ion Implantation; 2.1. Introduction; 2.2. Ion implanters; 2.2.1. General description; 2.2.2. Ion sources
Control code
828672185
Dimensions
unknown
Extent
1 online resource
File format
unknown
Form of item
online
Isbn
9781118601143
Lccn
2011008131
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other physical details
illustrations
http://library.link/vocab/ext/overdrive/overdriveId
cl0500000292
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)828672185
Label
Silicon technologies : ion implantation and thermal treatment, edited by Annie Baudrant
Publication
Note
Title from PDF title page (viewed on Feb. 28, 2013)
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Cover; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. Silicon and Silicon Carbide Oxidation; 1.1. Introduction; 1.2. Overview of the various oxidation techniques; 1.2.1. General information; 1.2.2. Most frequently used methods in the semiconductor industry; 1.2.3. Other methods; 1.3. Some physical properties of silica; 1.3.1. The silica structure; 1.3.2. Three useful parameters of silica; 1.3.3. Transport properties in silica; 1.4. Equations of atomic transport during oxidation; 1.4.1. Transport equations in the general case
  • 1.5.5. Experimental results and conclusions on the transport mechanisms during the anodic oxidation of silicon1.5.6. Important experimental results from dry SiC thermal oxidation; 1.6. Transport equations in the case of thermal oxidation; 1.6.1. General information on flux and on growth kinetics; 1.6.2. Flux calculation for neutral mobile species; 1.6.3. Flux calculation for ion mobile species; 1.7. Deal and Grove theory of thermal oxidation; 1.7.1. Flux calculation; 1.7.2. Growth kinetics equations; 1.7.3. Remarks on the fluctuations of the oxidation constants kP and kL
  • 1.7.4. Determination of the oxidation parameters from experimental results1.7.5. Confrontation of the Deal and Grove theory with experimental results; 1.7.6. Conclusions on the Deal and Grove theory; 1.8. Theory of thermal oxidation under water vapor of silicon; 1.8.1. Concentration profiles expected for H2O; 1.8.2. Concentration profiles expected for the OH groups; 1.8.3. Concentration profiles expected for H2; 1.8.4. Concentration profiles expected for H; 1.8.5. Comparison of the expected and the experimental profiles; 1.8.6. Wolters theory
  • 1.9. Kinetics of growth in O2 for oxide films < 30 nm1.9.1. Introduction; 1.9.2. Oxidation models of thin films; 1.9.3. Case of ultra-thin films (< 5 nm); 1.9.4. On line simulator; 1.9.5. Kinetics and models of SiC oxidation; 1.10. Fluctuations of the oxidation constants under experimental conditions; 1.10.1. Role of the pressure; 1.10.2. Role of the temperature; 1.10.3. Role of the crystal direction; 1.10.4. Role of doping; 1.11. Conclusion; 1.12. Bibliography; Chapter 2. Ion Implantation; 2.1. Introduction; 2.2. Ion implanters; 2.2.1. General description; 2.2.2. Ion sources
Control code
828672185
Dimensions
unknown
Extent
1 online resource
File format
unknown
Form of item
online
Isbn
9781118601143
Lccn
2011008131
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other physical details
illustrations
http://library.link/vocab/ext/overdrive/overdriveId
cl0500000292
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)828672185

Library Locations

    • Ellis LibraryBorrow it
      1020 Lowry Street, Columbia, MO, 65201, US
      38.944491 -92.326012
    • Engineering Library & Technology CommonsBorrow it
      W2001 Lafferre Hall, Columbia, MO, 65211, US
      38.946102 -92.330125
Processing Feedback ...