Coverart for item
The Resource Solitons, instantons, and twistors, Maciej Dunajski

Solitons, instantons, and twistors, Maciej Dunajski

Label
Solitons, instantons, and twistors
Title
Solitons, instantons, and twistors
Statement of responsibility
Maciej Dunajski
Creator
Subject
Language
eng
Summary
Most nonlinear differential equations arising in natural sciences admit chaotic behaviour and cannot be solved analytically. Integrable systems lie on the other extreme. They possess regular, stable, and well behaved solutions known as solitons and instantons. These solutions play important roles in pure and applied mathematics as well as in theoretical physics where they describe configurations topologically different from vacuum. While integrable equations in lower space-timedimensions can be solved using the inverse scattering transform, the higher-dimensional examples of anti-self-dual Yan
Member of
Cataloging source
CDX
http://library.link/vocab/creatorName
Dunajski, Maciej
Dewey number
530.12/4
Illustrations
illustrations
Index
index present
LC call number
QC174.26.W28
LC item number
D86 2010eb
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
Series statement
  • Oxford mathematics
  • Oxford graduate texts in mathematics
Series volume
19
http://library.link/vocab/subjectName
  • Solitons
  • Instantons
  • Wave-motion, Theory of
  • Geometry, Differential
  • Twistor theory
  • SCIENCE
  • Geometry, Differential
  • Solitons
  • Twistor theory
  • Wave-motion, Theory of
Label
Solitons, instantons, and twistors, Maciej Dunajski
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
Integrability in classical mathematics -- Soliton equations and the inverse scattering transform -- Hamiltonian formalism and zero-curvature representation -- Lie symmetries and reductions -- Lagrangian formalism and field theory -- Gauge field theory -- Integrability of ASDYM and twistor theory -- Symmetry reductions and the integrable chiral model -- Gravitational instantons -- Anti-self-dual conformal structures -- Appendix A: Manifolds and topology -- Appendix B: Complex analysis -- Appendix C: Overdetermined PDEs
Control code
507435856
Extent
1 online resource (xi, 359 pages)
Form of item
online
Isbn
9780191574108
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other control number
9786612383342
Other physical details
illustrations.
http://library.link/vocab/ext/overdrive/overdriveId
238334
Specific material designation
remote
System control number
(OCoLC)507435856
Label
Solitons, instantons, and twistors, Maciej Dunajski
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
Integrability in classical mathematics -- Soliton equations and the inverse scattering transform -- Hamiltonian formalism and zero-curvature representation -- Lie symmetries and reductions -- Lagrangian formalism and field theory -- Gauge field theory -- Integrability of ASDYM and twistor theory -- Symmetry reductions and the integrable chiral model -- Gravitational instantons -- Anti-self-dual conformal structures -- Appendix A: Manifolds and topology -- Appendix B: Complex analysis -- Appendix C: Overdetermined PDEs
Control code
507435856
Extent
1 online resource (xi, 359 pages)
Form of item
online
Isbn
9780191574108
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other control number
9786612383342
Other physical details
illustrations.
http://library.link/vocab/ext/overdrive/overdriveId
238334
Specific material designation
remote
System control number
(OCoLC)507435856

Library Locations

    • Ellis LibraryBorrow it
      1020 Lowry Street, Columbia, MO, 65201, US
      38.944491 -92.326012
Processing Feedback ...