The Resource Theory of Sobolev multipliers : with applications to differential and integral operators, Vladimir G. Maz'ya, Tatyana O. Shaposhnikova
Theory of Sobolev multipliers : with applications to differential and integral operators, Vladimir G. Maz'ya, Tatyana O. Shaposhnikova
Resource Information
The item Theory of Sobolev multipliers : with applications to differential and integral operators, Vladimir G. Maz'ya, Tatyana O. Shaposhnikova represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Theory of Sobolev multipliers : with applications to differential and integral operators, Vladimir G. Maz'ya, Tatyana O. Shaposhnikova represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 1 library branch.
- Summary
- The purpose of this book is to give a comprehensive exposition of the theory of pointwise multipliers acting in pairs of spaces of differentiable functions. The theory was essentially developed by the authors during the last thirty years and the present volume is mainly based on their results. Part I is devoted to the theory of multipliers and encloses the following topics: trace inequalities, analytic characterization of multipliers, relations between spaces of Sobolev multipliers and other function spaces, maximal subalgebras of multiplier spaces, traces and extensions of multipliers, essential norm and compactness of multipliers, and miscellaneous properties of multipliers. Part II concerns several applications of this theory: continuity and compactness of differential operators in pairs of Sobolev spaces, multipliers as solutions to linear and quasilinear elliptic equations, higher regularity in the single and double layer potential theory for Lipschitz domains, regularity of the boundary in $L_p$-theory of elliptic boundary value problems, and singular integral operators in Sobolev spaces
- Language
- eng
- Extent
- 1 online resource (xiii, 609 pages)
- Contents
-
- pt. 1. Description and properties of multipliers
- pt. 2. Applications of multipliers to differential and integral operators
- Isbn
- 9783540694908
- Label
- Theory of Sobolev multipliers : with applications to differential and integral operators
- Title
- Theory of Sobolev multipliers
- Title remainder
- with applications to differential and integral operators
- Statement of responsibility
- Vladimir G. Maz'ya, Tatyana O. Shaposhnikova
- Title variation
- Sobolev multipliers
- Subject
-
- Differential operators
- Differential operators
- Integral operators
- Integral operators
- Integral operators
- MATHEMATICS -- Functional Analysis
- Multiplicateurs (Analyse mathématique)
- Multipliers (Mathematical analysis)
- Multipliers (Mathematical analysis)
- Multipliers (Mathematical analysis)
- Opérateurs différentiels
- Opérateurs intégraux
- Sobolev spaces
- Sobolev spaces
- Sobolev spaces
- Sobolev, Espaces de
- Differential operators
- Language
- eng
- Summary
- The purpose of this book is to give a comprehensive exposition of the theory of pointwise multipliers acting in pairs of spaces of differentiable functions. The theory was essentially developed by the authors during the last thirty years and the present volume is mainly based on their results. Part I is devoted to the theory of multipliers and encloses the following topics: trace inequalities, analytic characterization of multipliers, relations between spaces of Sobolev multipliers and other function spaces, maximal subalgebras of multiplier spaces, traces and extensions of multipliers, essential norm and compactness of multipliers, and miscellaneous properties of multipliers. Part II concerns several applications of this theory: continuity and compactness of differential operators in pairs of Sobolev spaces, multipliers as solutions to linear and quasilinear elliptic equations, higher regularity in the single and double layer potential theory for Lipschitz domains, regularity of the boundary in $L_p$-theory of elliptic boundary value problems, and singular integral operators in Sobolev spaces
- Cataloging source
- GW5XE
- http://library.link/vocab/creatorName
- Mazʹi︠a︡, V. G
- Dewey number
- 515/.7
- Illustrations
- illustrations
- Index
- index present
- LC call number
- QA323
- LC item number
- .M392 2009eb
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- http://library.link/vocab/relatedWorkOrContributorName
- Shaposhnikova, T. O
- Series statement
-
- Grundlehren der mathematischen Wissenschaften =
- Comprehensive studies in mathematics,
- Series volume
- 337
- http://library.link/vocab/subjectName
-
- Multipliers (Mathematical analysis)
- Sobolev spaces
- Differential operators
- Integral operators
- Multiplicateurs (Analyse mathématique)
- Sobolev, Espaces de
- Opérateurs différentiels
- Opérateurs intégraux
- MATHEMATICS
- Differential operators
- Integral operators
- Multipliers (Mathematical analysis)
- Sobolev spaces
- Label
- Theory of Sobolev multipliers : with applications to differential and integral operators, Vladimir G. Maz'ya, Tatyana O. Shaposhnikova
- Bibliography note
- Includes bibliographical references (pages 591-603) and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- pt. 1. Description and properties of multipliers -- pt. 2. Applications of multipliers to differential and integral operators
- Control code
- 310352206
- Dimensions
- unknown
- Extent
- 1 online resource (xiii, 609 pages)
- Form of item
- online
- Isbn
- 9783540694908
- Lccn
- 2008932182
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other control number
- 10.1007/978-3-540-69492-2
- Other physical details
- illustrations.
- http://library.link/vocab/ext/overdrive/overdriveId
- 978-3-540-69490-8
- Specific material designation
- remote
- System control number
- (OCoLC)310352206
- Label
- Theory of Sobolev multipliers : with applications to differential and integral operators, Vladimir G. Maz'ya, Tatyana O. Shaposhnikova
- Bibliography note
- Includes bibliographical references (pages 591-603) and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- pt. 1. Description and properties of multipliers -- pt. 2. Applications of multipliers to differential and integral operators
- Control code
- 310352206
- Dimensions
- unknown
- Extent
- 1 online resource (xiii, 609 pages)
- Form of item
- online
- Isbn
- 9783540694908
- Lccn
- 2008932182
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other control number
- 10.1007/978-3-540-69492-2
- Other physical details
- illustrations.
- http://library.link/vocab/ext/overdrive/overdriveId
- 978-3-540-69490-8
- Specific material designation
- remote
- System control number
- (OCoLC)310352206
Subject
- Differential operators
- Differential operators
- Integral operators
- Integral operators
- Integral operators
- MATHEMATICS -- Functional Analysis
- Multiplicateurs (Analyse mathématique)
- Multipliers (Mathematical analysis)
- Multipliers (Mathematical analysis)
- Multipliers (Mathematical analysis)
- Opérateurs différentiels
- Opérateurs intégraux
- Sobolev spaces
- Sobolev spaces
- Sobolev spaces
- Sobolev, Espaces de
- Differential operators
Member of
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Theory-of-Sobolev-multipliers--with-applications/e0ss7Oyr53w/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Theory-of-Sobolev-multipliers--with-applications/e0ss7Oyr53w/">Theory of Sobolev multipliers : with applications to differential and integral operators, Vladimir G. Maz'ya, Tatyana O. Shaposhnikova</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Theory of Sobolev multipliers : with applications to differential and integral operators, Vladimir G. Maz'ya, Tatyana O. Shaposhnikova
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Theory-of-Sobolev-multipliers--with-applications/e0ss7Oyr53w/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Theory-of-Sobolev-multipliers--with-applications/e0ss7Oyr53w/">Theory of Sobolev multipliers : with applications to differential and integral operators, Vladimir G. Maz'ya, Tatyana O. Shaposhnikova</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>