The Resource Twistor theory for Riemannian symmetric spaces : with applications to harmonic maps of Riemann surfaces, Francis E. Burstall, John H. Rawnsley
Twistor theory for Riemannian symmetric spaces : with applications to harmonic maps of Riemann surfaces, Francis E. Burstall, John H. Rawnsley
Resource Information
The item Twistor theory for Riemannian symmetric spaces : with applications to harmonic maps of Riemann surfaces, Francis E. Burstall, John H. Rawnsley represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Twistor theory for Riemannian symmetric spaces : with applications to harmonic maps of Riemann surfaces, Francis E. Burstall, John H. Rawnsley represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 1 library branch.
- Summary
- In this monograph on twistor theory and its applications to harmonic map theory, a central theme is the interplay between the complex homogeneous geometry of flag manifolds and the real homogeneous geometry of symmetric spaces. In particular, flag manifolds are shown to arise as twistor spaces of Riemannian symmetric spaces. Applications of this theory include a complete classification of stable harmonic 2-spheres in Riemannian symmetric spaces and a Bcklund transform for harmonic 2-spheres in Lie groups which, in many cases, provides a factorisation theorem for such spheres as well as gap phenomena. The main methods used are those of homogeneous geometry and Lie theory together with some algebraic geometry of Riemann surfaces. The work addresses differential geometers, especially those with interests in minimal surfaces and homogeneous manifolds
- Language
- eng
- Extent
- 1 online resource (112 pages).
- Contents
-
- Homogeneous geometry
- Harmonic maps and twistor spaces
- Symmetric spaces
- Flag manifolds
- The twistor space of a Riemannian symmetric space
- Twistor lifts over Riemannian symmetric spaces
- Stable Harmonic 2-spheres
- Factorisation of harmonic spheres in Lie groups
- Isbn
- 9783540470526
- Label
- Twistor theory for Riemannian symmetric spaces : with applications to harmonic maps of Riemann surfaces
- Title
- Twistor theory for Riemannian symmetric spaces
- Title remainder
- with applications to harmonic maps of Riemann surfaces
- Statement of responsibility
- Francis E. Burstall, John H. Rawnsley
- Language
- eng
- Summary
- In this monograph on twistor theory and its applications to harmonic map theory, a central theme is the interplay between the complex homogeneous geometry of flag manifolds and the real homogeneous geometry of symmetric spaces. In particular, flag manifolds are shown to arise as twistor spaces of Riemannian symmetric spaces. Applications of this theory include a complete classification of stable harmonic 2-spheres in Riemannian symmetric spaces and a Bcklund transform for harmonic 2-spheres in Lie groups which, in many cases, provides a factorisation theorem for such spheres as well as gap phenomena. The main methods used are those of homogeneous geometry and Lie theory together with some algebraic geometry of Riemann surfaces. The work addresses differential geometers, especially those with interests in minimal surfaces and homogeneous manifolds
- Action
- digitized
- Cataloging source
- SPLNM
- http://library.link/vocab/creatorDate
- 1956-
- http://library.link/vocab/creatorName
- Burstall, Francis E.
- Dewey number
- 515.53
- Index
- index present
- LC call number
-
- QA3
- QA614.73
- LC item number
- .L28 no. 1424
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- http://library.link/vocab/relatedWorkOrContributorDate
- 1947-
- http://library.link/vocab/relatedWorkOrContributorName
- Rawnsley, John H.
- Series statement
- Lecture notes in mathematics,
- Series volume
- 1424
- http://library.link/vocab/subjectName
-
- Harmonic maps
- Twistor theory
- Symmetric spaces
- Manifolds (Mathematics)
- Harmonic maps
- Manifolds (Mathematics)
- Symmetric spaces
- Twistor theory
- Label
- Twistor theory for Riemannian symmetric spaces : with applications to harmonic maps of Riemann surfaces, Francis E. Burstall, John H. Rawnsley
- Bibliography note
- Includes bibliographical references (pages 108-110) and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Homogeneous geometry -- Harmonic maps and twistor spaces -- Symmetric spaces -- Flag manifolds -- The twistor space of a Riemannian symmetric space -- Twistor lifts over Riemannian symmetric spaces -- Stable Harmonic 2-spheres -- Factorisation of harmonic spheres in Lie groups
- Control code
- 298644330
- Dimensions
- unknown
- Extent
- 1 online resource (112 pages).
- Form of item
- online
- Isbn
- 9783540470526
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Reproduction note
- Electronic reproduction.
- Sound
- unknown sound
- Specific material designation
- remote
- System control number
- (OCoLC)298644330
- System details
- Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
- Label
- Twistor theory for Riemannian symmetric spaces : with applications to harmonic maps of Riemann surfaces, Francis E. Burstall, John H. Rawnsley
- Bibliography note
- Includes bibliographical references (pages 108-110) and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Homogeneous geometry -- Harmonic maps and twistor spaces -- Symmetric spaces -- Flag manifolds -- The twistor space of a Riemannian symmetric space -- Twistor lifts over Riemannian symmetric spaces -- Stable Harmonic 2-spheres -- Factorisation of harmonic spheres in Lie groups
- Control code
- 298644330
- Dimensions
- unknown
- Extent
- 1 online resource (112 pages).
- Form of item
- online
- Isbn
- 9783540470526
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Reproduction note
- Electronic reproduction.
- Sound
- unknown sound
- Specific material designation
- remote
- System control number
- (OCoLC)298644330
- System details
- Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Twistor-theory-for-Riemannian-symmetric-spaces-/Y_lF-J_iTM8/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Twistor-theory-for-Riemannian-symmetric-spaces-/Y_lF-J_iTM8/">Twistor theory for Riemannian symmetric spaces : with applications to harmonic maps of Riemann surfaces, Francis E. Burstall, John H. Rawnsley</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Twistor theory for Riemannian symmetric spaces : with applications to harmonic maps of Riemann surfaces, Francis E. Burstall, John H. Rawnsley
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Twistor-theory-for-Riemannian-symmetric-spaces-/Y_lF-J_iTM8/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Twistor-theory-for-Riemannian-symmetric-spaces-/Y_lF-J_iTM8/">Twistor theory for Riemannian symmetric spaces : with applications to harmonic maps of Riemann surfaces, Francis E. Burstall, John H. Rawnsley</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>