The Resource Walsh equiconvergence of complex interpolating polynomials, by Amnon Jakimovski, Ambikeshwar Sharma and József Szabados
Walsh equiconvergence of complex interpolating polynomials, by Amnon Jakimovski, Ambikeshwar Sharma and József Szabados
Resource Information
The item Walsh equiconvergence of complex interpolating polynomials, by Amnon Jakimovski, Ambikeshwar Sharma and József Szabados represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Walsh equiconvergence of complex interpolating polynomials, by Amnon Jakimovski, Ambikeshwar Sharma and József Szabados represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
This item is available to borrow from 1 library branch.
- Summary
- This book is a collection of the various old and new results, centered around the following simple and beautiful observation of J.L. Walsh - If a function is analytic in a finite disc, and not in a larger disc, then the difference between the Lagrange interpolant of the function, at the roots of unity, and the partial sums of the Taylor series, about the origin, tends to zero in a larger disc than the radius of convergence of the Taylor series, while each of these operators converges only in the original disc. This book will be particularly useful for researchers in approximation and interpolation theory
- Language
- eng
- Extent
- 1 online resource (xiii, 296 pages).
- Contents
-
- Dedication. Preface. Lagrange Interpolation and Walsh Equiconvergence
- Hermite and Hermite-Birkhoff Interpolation and Walsh Equiconvergence
- A generalization of the Taylor Series to Rational Functions and Walsh Equiconvergence
- Sharpness Results
- Converse Results
- Padé Approximation and Walsh Equiconvergence for Meromorphic Functions with v-Poles
- Quantitative Results in the Equiconvergence of Approximation of Meromorphic Functions
- Equiconvergence for Functions Analytic in an Ellipse
- Walsh Equiconvergence Theorems for the Faber Series
- Equiconvergence on Lemniscates
- Walsh Equiconvergence and Summability
- References
- Isbn
- 9781402041754
- Label
- Walsh equiconvergence of complex interpolating polynomials
- Title
- Walsh equiconvergence of complex interpolating polynomials
- Statement of responsibility
- by Amnon Jakimovski, Ambikeshwar Sharma and József Szabados
- Language
- eng
- Summary
- This book is a collection of the various old and new results, centered around the following simple and beautiful observation of J.L. Walsh - If a function is analytic in a finite disc, and not in a larger disc, then the difference between the Lagrange interpolant of the function, at the roots of unity, and the partial sums of the Taylor series, about the origin, tends to zero in a larger disc than the radius of convergence of the Taylor series, while each of these operators converges only in the original disc. This book will be particularly useful for researchers in approximation and interpolation theory
- Cataloging source
- GW5XE
- http://library.link/vocab/creatorDate
- 1925-
- http://library.link/vocab/creatorName
- Jakimovski, Amnon
- Dewey number
- 512.9422
- Index
- no index present
- Language note
- English
- LC call number
- QA161.P59
- LC item number
- J35 2006eb
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- http://library.link/vocab/relatedWorkOrContributorName
-
- Sharma, A.
- Szabados, J
- Series statement
- Springer monographs in mathematics
- http://library.link/vocab/subjectName
-
- Polynomials
- Polynômes
- MATHEMATICS
- Polynomials
- Polynomials
- Label
- Walsh equiconvergence of complex interpolating polynomials, by Amnon Jakimovski, Ambikeshwar Sharma and József Szabados
- Bibliography note
- Includes bibliographical references
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Dedication. Preface. Lagrange Interpolation and Walsh Equiconvergence -- Hermite and Hermite-Birkhoff Interpolation and Walsh Equiconvergence -- A generalization of the Taylor Series to Rational Functions and Walsh Equiconvergence -- Sharpness Results -- Converse Results -- Padé Approximation and Walsh Equiconvergence for Meromorphic Functions with v-Poles -- Quantitative Results in the Equiconvergence of Approximation of Meromorphic Functions -- Equiconvergence for Functions Analytic in an Ellipse -- Walsh Equiconvergence Theorems for the Faber Series -- Equiconvergence on Lemniscates -- Walsh Equiconvergence and Summability -- References
- Control code
- 262687548
- Dimensions
- unknown
- Extent
- 1 online resource (xiii, 296 pages).
- Form of item
- online
- Isbn
- 9781402041754
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other control number
- 10.1007/978-1-4020-4175-4
- http://library.link/vocab/ext/overdrive/overdriveId
- 978-1-4020-4174-7
- Specific material designation
- remote
- System control number
- (OCoLC)262687548
- Label
- Walsh equiconvergence of complex interpolating polynomials, by Amnon Jakimovski, Ambikeshwar Sharma and József Szabados
- Bibliography note
- Includes bibliographical references
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Dedication. Preface. Lagrange Interpolation and Walsh Equiconvergence -- Hermite and Hermite-Birkhoff Interpolation and Walsh Equiconvergence -- A generalization of the Taylor Series to Rational Functions and Walsh Equiconvergence -- Sharpness Results -- Converse Results -- Padé Approximation and Walsh Equiconvergence for Meromorphic Functions with v-Poles -- Quantitative Results in the Equiconvergence of Approximation of Meromorphic Functions -- Equiconvergence for Functions Analytic in an Ellipse -- Walsh Equiconvergence Theorems for the Faber Series -- Equiconvergence on Lemniscates -- Walsh Equiconvergence and Summability -- References
- Control code
- 262687548
- Dimensions
- unknown
- Extent
- 1 online resource (xiii, 296 pages).
- Form of item
- online
- Isbn
- 9781402041754
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other control number
- 10.1007/978-1-4020-4175-4
- http://library.link/vocab/ext/overdrive/overdriveId
- 978-1-4020-4174-7
- Specific material designation
- remote
- System control number
- (OCoLC)262687548
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Walsh-equiconvergence-of-complex-interpolating/FqyeaqIxGl8/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Walsh-equiconvergence-of-complex-interpolating/FqyeaqIxGl8/">Walsh equiconvergence of complex interpolating polynomials, by Amnon Jakimovski, Ambikeshwar Sharma and József Szabados</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Walsh equiconvergence of complex interpolating polynomials, by Amnon Jakimovski, Ambikeshwar Sharma and József Szabados
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/portal/Walsh-equiconvergence-of-complex-interpolating/FqyeaqIxGl8/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/portal/Walsh-equiconvergence-of-complex-interpolating/FqyeaqIxGl8/">Walsh equiconvergence of complex interpolating polynomials, by Amnon Jakimovski, Ambikeshwar Sharma and József Szabados</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>