Coverart for item
The Resource Walsh equiconvergence of complex interpolating polynomials, by Amnon Jakimovski, Ambikeshwar Sharma and József Szabados

Walsh equiconvergence of complex interpolating polynomials, by Amnon Jakimovski, Ambikeshwar Sharma and József Szabados

Label
Walsh equiconvergence of complex interpolating polynomials
Title
Walsh equiconvergence of complex interpolating polynomials
Statement of responsibility
by Amnon Jakimovski, Ambikeshwar Sharma and József Szabados
Creator
Contributor
Subject
Language
eng
Summary
This book is a collection of the various old and new results, centered around the following simple and beautiful observation of J.L. Walsh - If a function is analytic in a finite disc, and not in a larger disc, then the difference between the Lagrange interpolant of the function, at the roots of unity, and the partial sums of the Taylor series, about the origin, tends to zero in a larger disc than the radius of convergence of the Taylor series, while each of these operators converges only in the original disc. This book will be particularly useful for researchers in approximation and interpolation theory
Member of
Cataloging source
GW5XE
http://library.link/vocab/creatorDate
1925-
http://library.link/vocab/creatorName
Jakimovski, Amnon
Dewey number
512.9422
Index
no index present
Language note
English
LC call number
QA161.P59
LC item number
J35 2006eb
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorName
  • Sharma, A.
  • Szabados, J
Series statement
Springer monographs in mathematics
http://library.link/vocab/subjectName
  • Polynomials
  • Polynômes
  • MATHEMATICS
  • Polynomials
  • Polynomials
Label
Walsh equiconvergence of complex interpolating polynomials, by Amnon Jakimovski, Ambikeshwar Sharma and József Szabados
Instantiates
Publication
Bibliography note
Includes bibliographical references
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
Dedication. Preface. Lagrange Interpolation and Walsh Equiconvergence -- Hermite and Hermite-Birkhoff Interpolation and Walsh Equiconvergence -- A generalization of the Taylor Series to Rational Functions and Walsh Equiconvergence -- Sharpness Results -- Converse Results -- Padé Approximation and Walsh Equiconvergence for Meromorphic Functions with v-Poles -- Quantitative Results in the Equiconvergence of Approximation of Meromorphic Functions -- Equiconvergence for Functions Analytic in an Ellipse -- Walsh Equiconvergence Theorems for the Faber Series -- Equiconvergence on Lemniscates -- Walsh Equiconvergence and Summability -- References
Control code
262687548
Dimensions
unknown
Extent
1 online resource (xiii, 296 pages).
Form of item
online
Isbn
9781402041754
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other control number
10.1007/978-1-4020-4175-4
http://library.link/vocab/ext/overdrive/overdriveId
978-1-4020-4174-7
Specific material designation
remote
System control number
(OCoLC)262687548
Label
Walsh equiconvergence of complex interpolating polynomials, by Amnon Jakimovski, Ambikeshwar Sharma and József Szabados
Publication
Bibliography note
Includes bibliographical references
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
Dedication. Preface. Lagrange Interpolation and Walsh Equiconvergence -- Hermite and Hermite-Birkhoff Interpolation and Walsh Equiconvergence -- A generalization of the Taylor Series to Rational Functions and Walsh Equiconvergence -- Sharpness Results -- Converse Results -- Padé Approximation and Walsh Equiconvergence for Meromorphic Functions with v-Poles -- Quantitative Results in the Equiconvergence of Approximation of Meromorphic Functions -- Equiconvergence for Functions Analytic in an Ellipse -- Walsh Equiconvergence Theorems for the Faber Series -- Equiconvergence on Lemniscates -- Walsh Equiconvergence and Summability -- References
Control code
262687548
Dimensions
unknown
Extent
1 online resource (xiii, 296 pages).
Form of item
online
Isbn
9781402041754
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other control number
10.1007/978-1-4020-4175-4
http://library.link/vocab/ext/overdrive/overdriveId
978-1-4020-4174-7
Specific material designation
remote
System control number
(OCoLC)262687548

Library Locations

    • Ellis LibraryBorrow it
      1020 Lowry Street, Columbia, MO, 65201, US
      38.944491 -92.326012
Processing Feedback ...