Boundary integral equations
Resource Information
The work Boundary integral equations represents a distinct intellectual or artistic creation found in University of Missouri Libraries. This resource is a combination of several types including: Work, Language Material, Books.
The Resource
Boundary integral equations
Resource Information
The work Boundary integral equations represents a distinct intellectual or artistic creation found in University of Missouri Libraries. This resource is a combination of several types including: Work, Language Material, Books.
 Label
 Boundary integral equations
 Statement of responsibility
 George C. Hsiao, Wolfgang L. Wendland
 Language
 eng
 Summary
 This book is devoted to the basic mathematical properties of solutions to boundary integral equations and presents a systematic approach to the variational methods for the boundary integral equations arising in elasticity, fluid mechanics, and acoustic scattering theory. It may also serve as the mathematical foundation of the boundary element methods. The latter have recently become extremely popular and efficient computational tools in applications. The authors are well known for their fundamental work on boundary integral equations and related topics. This book is a major scholarly contribution to the modern theory of boundary integral equations and should be accessible and useful to a large community of mathematical analysts, applied mathematicians, engineers and scientists
 Cataloging source
 GW5XE
 Dewey number
 515.45
 Illustrations
 illustrations
 Index
 index present
 LC call number
 QA1
 LC item number
 .A647 v.164eb
 Literary form
 non fiction
 Nature of contents

 dictionaries
 bibliography
 Series statement
 Applied mathematical sciences
 Series volume
 164
Context
Context of Boundary integral equationsWork of
No resources found
No enriched resources found
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa faexternallinksquare fafw"></i> Data from <span resource="http://link.library.missouri.edu/resource/0F19VcDARw/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/0F19VcDARw/">Boundary integral equations</a></span>  <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data  Experimental
Data Citation of the Work Boundary integral equations
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa faexternallinksquare fafw"></i> Data from <span resource="http://link.library.missouri.edu/resource/0F19VcDARw/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/0F19VcDARw/">Boundary integral equations</a></span>  <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>