Global classical solutions for quasilinear hyperbolic systems, Li Ta-tsien
Resource Information
The instance Global classical solutions for quasilinear hyperbolic systems, Li Ta-tsien represents a material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
The Resource
Global classical solutions for quasilinear hyperbolic systems, Li Ta-tsien
Resource Information
The instance Global classical solutions for quasilinear hyperbolic systems, Li Ta-tsien represents a material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
- Label
- Global classical solutions for quasilinear hyperbolic systems, Li Ta-tsien
- Statement of responsibility
- Li Ta-tsien
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Generalized Riemann problem for the system of one-dimensional isentropic flow
- Typical free boundary problem and generalized Riemann problem for generalized quasilinear hyperbolic systems
- Acknowledgments
- Preface
- Cauchy problem for single first order equations
- Cauchy problem for reducible quasilinear hyperbolic systems
- Cauchy problem for general quasilinear hyperbolic systems
- Cauchy problem for quasilinear hyperbolic systems with dissipation
- Mixed initial-boundary value problem with boundary dissipation quasilinear hyperbolic systems
- Typical boundary value problem and typical free boundary problem for reducible quasilinear hyperbolic systems
- Control code
- 30058877
- Dimensions
- 24 cm
- Extent
- viii, 315 pages
- Isbn
- 9780471950110
- Isbn Type
- (Wiley)
- Lccn
- 94200443
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- illustrations
- Record ID
- .b25921447
- System control number
- (WaOLN)1638501
Context
Context of Global classical solutions for quasilinear hyperbolic systems, Li Ta-tsienEmbed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/resource/3mXtt-hWMBY/" typeof="Book http://bibfra.me/vocab/lite/Instance"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/3mXtt-hWMBY/">Global classical solutions for quasilinear hyperbolic systems, Li Ta-tsien</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Instance Global classical solutions for quasilinear hyperbolic systems, Li Ta-tsien
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/resource/3mXtt-hWMBY/" typeof="Book http://bibfra.me/vocab/lite/Instance"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/3mXtt-hWMBY/">Global classical solutions for quasilinear hyperbolic systems, Li Ta-tsien</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>