Lie theory : harmonic analysis on symmetric spaces, general Plancherel theorems
Resource Information
The work Lie theory : harmonic analysis on symmetric spaces, general Plancherel theorems represents a distinct intellectual or artistic creation found in University of Missouri Libraries. This resource is a combination of several types including: Work, Language Material, Books.
The Resource
Lie theory : harmonic analysis on symmetric spaces, general Plancherel theorems
Resource Information
The work Lie theory : harmonic analysis on symmetric spaces, general Plancherel theorems represents a distinct intellectual or artistic creation found in University of Missouri Libraries. This resource is a combination of several types including: Work, Language Material, Books.
- Label
- Lie theory : harmonic analysis on symmetric spaces, general Plancherel theorems
- Title remainder
- harmonic analysis on symmetric spaces, general Plancherel theorems
- Statement of responsibility
- Jean-Philippe Anker, Bent Orsted, editors
- Subject
-
- Analyse harmonique
- Analyse harmonique
- Análise harmônica
- Espaces symétriques
- Espaces symétriques
- Espaces vectoriels topologiques
- Espaces vectoriels topologiques
- Harmonic analysis
- Harmonic analysis
- Harmonic analysis
- Harmonic analysis
- Harmonische Analyse -- Lie-Gruppe | Topologischer Vektorraum | Symmetrischer Raum
- Harmonische analyse
- Harmonische analyse
- Lie groups
- Lie groups
- Lie groups
- Lie groups
- Lie, Groupes de
- Lie, Groupes de
- Lie-Gruppe -- Harmonische Analyse | Topologischer Vektorraum | Symmetrischer Raum
- Lie-groepen
- Lie-groepen
- Linear topological spaces
- Linear topological spaces
- Linear topological spaces
- Linear topological spaces
- MATHEMATICS -- Algebra | Intermediate
- Symmetric spaces
- Symmetric spaces
- Symmetric spaces
- Symmetric spaces
- Symmetrische ruimten
- Symmetrische ruimten
- Symmetrischer Raum -- Topologischer Vektorraum | Harmonische Analyse | Lie-Gruppe
- Topologischer Vektorraum -- Harmonische Analyse | Lie-Gruppe | Symmetrischer Raum
- Language
- eng
- Summary
- "Harmonic Analysis on Symmetric Spaces - General Plancherel Theorems presents extensive surveys by E.P. van den Ban, H. Schlichtkrull, and P. Delorme of the spectacular progress over the past decade in deriving the Plancherel theorem on reductive symmetric spaces." "Well suited for both graduate students and researchers in semisimple Lie theory and neighboring fields, and possibly even mathematical cosmology, Harmonic Analysis on Symmetric Spaces - General Plancherel Theorems provides a broad, clearly focused examination of semisimple Lie groups and their integral importance and applications to research in many branches of mathematics and physics. Knowledge of basic representation theory of Lie groups as well as familiarity with semisimple Lie groups, symmetric spaces, and parabolic subgroups is required."--Jacket
- Cataloging source
- COO
- Dewey number
- 512/.482
- Illustrations
- illustrations
- Index
- no index present
- LC call number
- QA387
- LC item number
- .L538 2005
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- Series statement
- Progress in mathematics
- Series volume
- v. 230
Context
Context of Lie theory : harmonic analysis on symmetric spaces, general Plancherel theoremsWork of
No resources found
No enriched resources found
- Lie theory : harmonic analysis on symmetric spaces, general Plancherel theorems, Jean-Philippe Anker, Bent Orsted, editors
- Lie theory : harmonic analysis on symmetric spaces, general Plancherel theorems, Jean-Philippe Anker, Bent Orsted, editors
- Lie theory : harmonic analysis on symmetric spaces, general Plancherel theorems, Jean-Philippe Anker, Bent Orsted, editors
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/resource/A0WJKFDBkmI/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/A0WJKFDBkmI/">Lie theory : harmonic analysis on symmetric spaces, general Plancherel theorems</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Work Lie theory : harmonic analysis on symmetric spaces, general Plancherel theorems
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/resource/A0WJKFDBkmI/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/A0WJKFDBkmI/">Lie theory : harmonic analysis on symmetric spaces, general Plancherel theorems</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>