#
Ramsey theory for product spaces
Resource Information
The work ** Ramsey theory for product spaces** represents a distinct intellectual or artistic creation found in **University of Missouri Libraries**. This resource is a combination of several types including: Work, Language Material, Books.

The Resource
Ramsey theory for product spaces
Resource Information

The work

**Ramsey theory for product spaces**represents a distinct intellectual or artistic creation found in**University of Missouri Libraries**. This resource is a combination of several types including: Work, Language Material, Books.- Label
- Ramsey theory for product spaces

- Statement of responsibility
- Pandelis Dodos, Vassilis Kanellopoulos

- Language
- eng

- Summary
- Ramsey theory is a dynamic area of combinatorics that has various applications in analysis, ergodic theory, logic, number theory, probability theory, theoretical computer science, and topological dynamics. This book is devoted to one of the most important areas of Ramsey theory--the Ramsey theory of product spaces. It is a culmination of a series of recent breakthroughs by the two authors and their students who were able to lift this theory to the infinite-dimensional case. The book presents many major results and methods in the area, such as Szemerédi's regularity method, the hypergraph removal lemma, and the density Hales-Jewett theorem. This book addresses researchers in combinatorics but also working mathematicians and advanced graduate students who are interested in Ramsey theory. The prerequisites for reading this book are rather minimal: it only requires familiarity, at the graduate level, with probability theory and real analysis. Some familiarity with the basics of Ramsey theory would be beneficial, though not necessary

- Cataloging source
- DLC

- Dewey number
- 511/.5

- Index
- index present

- LC call number
- QA164

- LC item number
- .D66 2016

- Literary form
- non fiction

- Nature of contents
- bibliography

- Series statement
- Mathematical surveys and monographs

- Series volume
- volume 212

## Context

Context of Ramsey theory for product spaces#### Work of

No resources found

No enriched resources found

## Embed

### Settings

Select options that apply then copy and paste the RDF/HTML data fragment to include in your application

Embed this data in a secure (HTTPS) page:

Layout options:

Include data citation:

<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/resource/CQqXbWx20DA/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/CQqXbWx20DA/">Ramsey theory for product spaces</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>

Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements

### Preview

## Cite Data - Experimental

### Data Citation of the Work Ramsey theory for product spaces

Copy and paste the following RDF/HTML data fragment to cite this resource

`<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/resource/CQqXbWx20DA/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/CQqXbWx20DA/">Ramsey theory for product spaces</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>`