Probability theory and applications, Elton P. Hsu, S.R.S. Varadhan, editors
Resource Information
The instance Probability theory and applications, Elton P. Hsu, S.R.S. Varadhan, editors represents a material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
The Resource
Probability theory and applications, Elton P. Hsu, S.R.S. Varadhan, editors
Resource Information
The instance Probability theory and applications, Elton P. Hsu, S.R.S. Varadhan, editors represents a material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
- Label
- Probability theory and applications, Elton P. Hsu, S.R.S. Varadhan, editors
- Statement of responsibility
- Elton P. Hsu, S.R.S. Varadhan, editors
- Note
- "Lecture notes from the Graduate Summer School Program on Probability Theory, held in Princeton, NJ, on June 23-July 13, 1996"--T.p. verso
- Bibliography note
- Includes bibliographical references (pages 373-374)
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Basic dichotomy
- 137
- The BC decoupling inequalities
- 139
- Comparison principles
- 143
- The DLR equation and states of the random cluster model
- 146
- Length scales in the Potts models
- 152
- Hydrodynamical Scaling Limits of Simple Exclusion Models
- 10
- Leif Jensen, Horng-Tzer Yau
- 167
- Lecture 1.
- The Simple Exclusion Model
- 171
- The configuration space
- 171
- The dynamics
- 171
- The generator
- Lecture 2.
- 172
- Reversibility
- 173
- Ito's formula and current
- 174
- Time-space scaling
- 175
- Macroscopic profiles
- 176
- Contents of the following lectures
- Coalescing Random Walks
- 178
- Lecture 2.
- Proof of Theorem 1.4
- 181
- Tightness
- 181
- Properties of the weak hydrodynamical equation
- 182
- Identification of the hydrodynamical equation
- 183
- 13
- Lecture 3.
- Local Ergodicity
- 187
- Lecture 4.
- Two-Block Estimate
- 193
- Lecture 5.
- Relative Entropy
- 197
- Asymmetric simple exclusion
- Lecture 3.
- 199
- Lecture 6.
- The Green-Kubo Formula and Asymmetric Simple Exclusion Processes
- 205
- Lecture 7.
- Some Open Problems
- 217
- An Introduction to Analysis on Path Space
- Daniel W. Stroock
- 227
- Voter Model with Mutation
- Lecture 1.
- Gaussian Measures on a Hilbert Space
- 231
- The finite dimensional case
- 231
- The infinite dimensional case
- 232
- Construction of Wiener measure
- 233
- A few variations
- 19
- 236
- Lecture 2.
- Rolling On
- 241
- The idea
- 241
- The rolling map
- 241
- The orthonormal frame bundle
- 243
- Species-area curves
- Extending the rolling map
- 245
- Lecture 3.
- About Wm
- 253
- Martingale properties
- 253
- Fun and games with Bochner's identity
- 256
- Lecture 4.
- 20
- A Few Facts, and Something Else
- 261
- H[superscript 1] ([0, [infinity]); M) as a Riemannian manifold
- 261
- An affine connection and its geodesics
- 263
- Perturbing paths along geodesics and Driver's formula
- 265
- Some comments and extensions
- 270
- Stochastic Spatial Models
- Species abundance distributions
- Analysis on Path and Loop Spaces
- Elton P. Hsu
- 277
- Lecture 1.
- Euclidean Brownian Motion
- 281
- Definition of euclidean Brownian motion
- 281
- Basic properties
- 283
- 22
- Quasi-invariance of the Wiener measure
- 284
- Brownian bridge
- 285
- Quasi-invariance of the Wiener measure in loop space
- 287
- Lecture 2.
- Gradient Operator
- 291
- Gradient operator
- Local limit theorems
- 291
- Integration by parts
- 293
- Closability of the gradient operator
- 295
- Gradient operator in flat loop space
- 296
- Lecture 3.
- Ornstein-Uhlenbeck Operator
- 299
- 23
- Definition and basic properties
- 299
- Spectrum of the Ornstein-Uhlenbeck operator
- 301
- Logarithmic Sobolev inequality
- 304
- Hypercontractivity of the Ornstein-Uhlenbeck semigroup
- 305
- Lecture 4.
- Brownian Motion on Manifolds
- Lecture 4.
- 309
- Preliminaries
- 309
- Construction of Riemannian Brownian motion
- 311
- Horizontal lift of Brownian motion
- 313
- Lecture 5.
- Gradient Formulas
- 319
- The Block Construction
- A commutation relation
- 319
- Gradient formula I
- 321
- Gradient formula II
- 323
- Bismut's formula for the gradient of the heat kernel
- 324
- Lecture 6.
- Integration by Parts
- 27
- 325
- Gradient operator in the path space
- 325
- Integration by parts in path space
- 327
- Brownian bridge on Riemannian manifolds
- 329
- Integration by parts in the loop space
- 331
- Lecture 7.
- Oriented percolation
- Logarithmic Sobolev Inequalities
- 337
- Martingale representation theorem
- 337
- Proof of the main result
- 339
- Generalized Ornstein-Uhlenbeck operator
- 341
- An Introduction to Option Pricing and the Mathematical Theory of Risk
- Marco Avellaneda
- 27
- 349
- Investments and probability
- 352
- Options
- 354
- Risk-neutral probabilities
- 358
- Risk-management using the "Greeks"
- 361
- Uncertain volatility models
- The stability theorem of Gray and Griffeath
- 365
- Relative entropy: combining volatility uncertainty with a-priori beliefs
- 369
- Rick Durrett
- 30
- Lecture 5.
- Long Range Limits
- 35
- Estimation for the limit system
- 37
- Continuity argument
- 37
- Lecture 6.
- Rapid Stirring Limits
- 5
- 39
- Independent and Dependent Percolation
- Jennifer Tour Chayes, Amber L. Puha, Ted Sweet
- 49
- Lecture 1.
- The Basics of Percolation
- 53
- Relevant quantities and expected behavior
- 53
- Basic techniques
- Lecture 1.
- 62
- Lecture 2.
- Rescaling and Finite-Size Scaling in Percolation
- 67
- Rescaling and characterization of phases (d = 2)
- 67
- Finite-size scaling and the correlation length
- 72
- Lecture 3.
- Critical Exponent Inequalities
- The Voter Model
- 81
- A bound on the correlation length via finite-size scaling events
- 81
- Mean-field bounds
- 86
- Lecture 4.
- Two Fundamental Questions
- 93
- Absence of an intermediate phase
- 93
- 9
- Uniqueness of the infinite cluster
- 99
- Lecture 5.
- Finite-Size Scaling and the Incipient Infinite Cluster
- 105
- The motivation
- 105
- Definitions of relevant quantities and preliminaries
- 108
- The scaling axioms and the results
- Construction and duality
- 111
- Interpretation of the results
- 117
- Lecture 6.
- The BK(R) Inequality
- 119
- Equivalent forms of the inequality
- 119
- Preliminaries to the proof of the BK inequality
- 121
- 9
- The proof of the BK inequality
- 122
- Lecture 7.
- The Potts Model and the Random Cluster Model
- 129
- The Potts models
- 130
- The Fortuin-Kasteleyn representation
- 134
- Standard correlation inequalities
- Control code
- 40359464
- Dimensions
- 27 cm
- Extent
- x, 374 pages
- Isbn
- 9780821805909
- Isbn Type
- (hc. : alk. paper)
- Lccn
- 98051767
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- illustrations
- Record ID
- .b41809701
- System control number
- (OCoLC)40359464
Context
Context of Probability theory and applications, Elton P. Hsu, S.R.S. Varadhan, editorsInstantiates
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/resource/Gj1XBw-lMg4/" typeof="Book http://bibfra.me/vocab/lite/Instance"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/Gj1XBw-lMg4/">Probability theory and applications, Elton P. Hsu, S.R.S. Varadhan, editors</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Instance Probability theory and applications, Elton P. Hsu, S.R.S. Varadhan, editors
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/resource/Gj1XBw-lMg4/" typeof="Book http://bibfra.me/vocab/lite/Instance"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/Gj1XBw-lMg4/">Probability theory and applications, Elton P. Hsu, S.R.S. Varadhan, editors</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>