#
Laplacian operator
Resource Information
The concept ** Laplacian operator** represents the subject, aboutness, idea or notion of resources found in **University of Missouri Libraries**.

The Resource
Laplacian operator
Resource Information

The concept

**Laplacian operator**represents the subject, aboutness, idea or notion of resources found in**University of Missouri Libraries**.- Label
- Laplacian operator

## Context

Context of Laplacian operator#### Subject of

No resources found

No enriched resources found

- A priori estimates for solutions of elliptic partial differential equations on surfaces
- An upper bound for the second eigenvalue of the Dirichlet Schrödinger operator with fixed first eigenvalue
- Coercive estimates for the Laplace-Beltrami operator
- Eigenvalues of the Laplacian : "can you hear the shape of a drum?"
- Galerkin finite difference Laplacian operators on isolated unstructured triangular meshes by linear combinations
- Ground state energy of the magnetic Laplacian on corner domains
- Hangzhou lectures on eigenfunctions of the Laplacian
- Hypoelliptic Laplacian and orbital integrals
- Hypoelliptic laplacian and orbital integrals
- Laplacian eigenvectors of graphs : Perron-Frobenius and Faber-Krahn type theorems
- Laplacian eigenvectors of graphs : Perron-Frobenius and Faber-Krahn type theorems
- Morse theoretic aspects of p-Laplacian type operators
- On the spectrum of the Dirichlet Laplacian and other elliptic operators
- Propriétés locales et globales de l'opérateur laplacien
- Scattering theory for the d'Alembert equation in exterior domains
- Scattering theory for the d'Alembert equation in exterior domains
- Spectral analysis on graph-like spaces
- Stability results for the first eigenvalue of the Laplacian on domains in space forms
- Stability results for the first eigenvalue of the Laplacian on domains in space forms
- Stratified Lie groups and potential theory for their sub-Laplacians
- Stratified Lie groups and potential theory for their sub-Laplacians
- The Laplacian on a Riemannian manifold : an introduction to analysis on manifolds
- The Lévy Laplacian
- The fractional Laplacian
- The fractional Laplacian
- The hypoelliptic Laplacian and Ray-Singer metrics
- The hypoelliptic Laplacian and Ray-Singer metrics

## Embed

### Settings

Select options that apply then copy and paste the RDF/HTML data fragment to include in your application

Embed this data in a secure (HTTPS) page:

Layout options:

Include data citation:

<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/resource/gMGQFjNaPBk/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/gMGQFjNaPBk/">Laplacian operator</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>

Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements

### Preview

## Cite Data - Experimental

### Data Citation of the Concept Laplacian operator

Copy and paste the following RDF/HTML data fragment to cite this resource

`<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/resource/gMGQFjNaPBk/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/gMGQFjNaPBk/">Laplacian operator</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>`