Commutative algebra
Resource Information
The concept Commutative algebra represents the subject, aboutness, idea or notion of resources found in University of Missouri Libraries.
The Resource
Commutative algebra
Resource Information
The concept Commutative algebra represents the subject, aboutness, idea or notion of resources found in University of Missouri Libraries.
- Label
- Commutative algebra
111 Items that share the Concept Commutative algebra
Context
Context of Commutative algebraSubject of
No resources found
No enriched resources found
- A Singular introduction to commutative algebra
- A course in commutative Banach algebras
- A course in commutative Banach algebras
- A course in commutative algebra
- A course in commutative algebra
- A non-Hausdorff completion : the Abelian category of C-complete left modules over a topological ring
- A singular introduction to commutative algebra
- A singular introduction to commutative algebra
- Algebraic theory of locally nilpotent derivations
- Algebraic theory of locally nilpotent derivations
- Algèbre commutative
- Algèbre commutative : langages géométrique et algébrique
- Algèbre commutative, Chapitre 10
- Algèbre commutative, Chapitres 5 à 7
- Algèbre commutative, Chapitres 8 et 9
- An introduction to commutative algebra : from the viewpoint of normalization
- An introduction to commutative algebra and number theory
- Approximate commutative algebra
- Arithmetic of blowup algebras
- Arithmetically Cohen-Macaulay sets of points in P1 {u00D7} P1
- Basic commutative algebra
- Categories of Boolean sheaves of simple algebras
- Categories of Boolean sheaves of simple algebras
- Categories of commutative algebras
- Classical summation in commutative and noncommutative Lp-spaces
- Collected papers of Joseph Lipman
- Combinatorial commutative algebra
- Combinatorial commutative algebra
- Combinatorics and commutative algebra
- Combinatorics and commutative algebra
- Commutative Algebra and its Interactions to Algebraic Geometry : VIASM 2013-2014
- Commutative algebra
- Commutative algebra
- Commutative algebra
- Commutative algebra
- Commutative algebra
- Commutative algebra
- Commutative algebra
- Commutative algebra
- Commutative algebra : Durham 1981
- Commutative algebra : analytical methods
- Commutative algebra : constructive methods : finite projective modules
- Commutative algebra : expository papers dedicated to David Eisenbud on the occasion of his 65th birthday
- Commutative algebra : expository papers dedicated to David Eisenbud on the occasion of his 65th birthday
- Commutative algebra : noetherian and non-noetherian perspectives
- Commutative algebra : recent advances in commutative rings, integer-valued polynomials, and polynomial functions
- Commutative algebra and noncommutative algebraic geometry
- Commutative algebra with a view toward algebraic geometry
- Commutative algebras of Toeplitz operators on the Bergman space
- Commutative group algebras
- Connections between algebra, combinatorics, and geometry
- Constructive commutative algebra : projective modules over polynomial rings and dynamical Gröbner bases
- Elementary algebraic geometry
- Fat manifolds and linear connections
- Funcții monogene pe algebre comutative
- Fuzzy commutative algebra
- Generic local structure of the morphisms in commutative algebra
- Generic local structure of the morphisms in commutative algebra
- Geometrie auf Varietäten
- Graduate algebra : commutative view
- Gröbner bases in commutative algebra
- Homological methods in commutative algebra
- Homological questions in local algebra
- Indistinguishable classical particles
- Introduction a la résolution des systèmes polynomiaux
- Introduction a la résolution des systèmes polynomiaux
- Introduction to algebraic geometry and commutative algebra
- Introduction to commutative algebra
- Introduction to commutative algebra and algebraic geometry
- Introduction to commutative algebra and algebraic geometry
- Joins and intersections
- Les formalismes fondamentaux de l'algèbre commutative
- Local cohomology : an algebraic introduction with geometric applications
- Manis valuations and Prüfer extensions I : a new chapter in commutative algebra
- Manis valuations and Prüfer extensions I : a new chapter in commutative algebra
- Manis valuations and Prüfer extensions II
- Manis valuations and Prüfer extensions II
- Minimal resolutions for a class of Gorenstein determinantal ideals
- Monomial ideals
- Monomial ideals
- Monomial ideals, computations and applications
- Monomial ideals, computations and applications
- Multiplicities and Chern classes in local algebra
- Number theory, algebraic geometry and commutative algebra : in honor of Yasuo Akizuki
- On normalized integral table algebras (fusion rings) : generated by a faithful non-real element of degree 3
- On normalized integral table algebras : (fusion rings) : generated by a faithful non-real element of degree 3
- On the André-Quillen cohomology of commutative F2-algebras
- Polynomial response maps
- Recent developments in commutative algebra : Levico Terma, Trento 2019
- Residue currents and Bezout identities
- Seminar D. Eisenbud/B. Singh/W. Vogel
- Serre's problem on projective modules
- Serre's problem on projective modules
- Shift-invariant uniform algebras on groups
- Shift-invariant uniform algebras on groups
- Six lectures on commutative algebra
- Smoothness, regularity and complete intersection
- Standard integral table algebras generated by a non-real element of small degree
- Standard integral table algebras generated by a non-real element of small degree
- Steps in commutative algebra
- Structures paragraduées : groupes, anneaux, modules
- The Curves seminar at Queen's
- The geometry of syzygies : a second course in commutative algebra and algebraic geometry
- The geometry of syzygies : a second course in commutative algebra and algebraic geometry
- The separable Galois theory of commutative rings
- The separable Galois theory of commutative rings
- The theory of uniform algebras
- The use of ultraproducts in commutative algebra
- The use of ultraproducts in commutative algebra
- Undergraduate commutative algebra
- Zum Kürzungsproblem kommutativer Algebren
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/resource/jNZ3qbk6K4A/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/jNZ3qbk6K4A/">Commutative algebra</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Concept Commutative algebra
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/resource/jNZ3qbk6K4A/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/jNZ3qbk6K4A/">Commutative algebra</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>