The poisson problem on Lipschitz domains
Resource Information
The work The poisson problem on Lipschitz domains represents a distinct intellectual or artistic creation found in University of Missouri Libraries. This resource is a combination of several types including: Work, Language Material, Books.
The Resource
The poisson problem on Lipschitz domains
Resource Information
The work The poisson problem on Lipschitz domains represents a distinct intellectual or artistic creation found in University of Missouri Libraries. This resource is a combination of several types including: Work, Language Material, Books.
- Label
- The poisson problem on Lipschitz domains
- Statement of responsibility
- by Svitlana Mayboroda
- Language
- eng
- Summary
- The aim of this work is to describe the sharp ranges of indices, for which the Poisson problem for Laplacian with Dirichlet or Neumann boundary conditions is well-posed on the scales of Besov and Triebel-Lizorkin spaces on arbitrary Lipschitz domains. The main theorems we prove extend the work of D. Jerison and C. Kenig [JFA, 95], whose methods and results are largely restricted to the case p_ 1, and answer the open problem #3.2.21 on p. 121 in C. Kenig's book in the most complete fashion. When specialized to Hardy spaces, our results provide a solution of a (strengthened form of a) conjecture made by D.-C. Chang, S.Krantz and E. Stein regarding the regularity of the Green potentials on Hardy spaces in Lipschitz domains. The corollaries of our main results include new proofs and various extensions of: Hardy space estimates for Green potentials in convex domains due to V. Adolfsson, B.Dahlberg, S. Fromm, D. Jerison, G.Verchota and T.Wolff and the Lp - Lq estimates for the gradients of Green potentials in Lipschitz domains, due to B. Dahlberg
- Cataloging source
- MUU
- Degree
- Ph.D.
- Dissertation year
- 2005.
- Granting institution
- University of Missouri-Columbia
- Index
- no index present
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- theses
- Target audience
- specialized
Context
Context of The poisson problem on Lipschitz domainsWork of
No resources found
No enriched resources found
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/resource/msQvfGI6WVI/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/msQvfGI6WVI/">The poisson problem on Lipschitz domains</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Work The poisson problem on Lipschitz domains
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/resource/msQvfGI6WVI/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/msQvfGI6WVI/">The poisson problem on Lipschitz domains</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>