An introduction to infinite-dimensional linear systems theory, Ruth F. Curtain, Hans Zwart
Resource Information
The instance An introduction to infinite-dimensional linear systems theory, Ruth F. Curtain, Hans Zwart represents a material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
The Resource
An introduction to infinite-dimensional linear systems theory, Ruth F. Curtain, Hans Zwart
Resource Information
The instance An introduction to infinite-dimensional linear systems theory, Ruth F. Curtain, Hans Zwart represents a material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
- Label
- An introduction to infinite-dimensional linear systems theory, Ruth F. Curtain, Hans Zwart
- Statement of responsibility
- Ruth F. Curtain, Hans Zwart
- Bibliography note
- Includes bibliographical references (pages [669]-684) and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- 1. Introduction -- 2. Semigroup theory -- 3. The Cauchy problem -- 4. Inputs and outputs -- 5. Stability, stabilizability, and detectability -- 6. Linear quadratic optimal control -- 7. Frequency-domain descriptions -- 8. Hankel operators and the Nehari problem -- 9. Robust finite-dimensional controller synthesis -- A. Mathematical background
- Control code
- 32013467
- Dimensions
- 25 cm
- Extent
- xviii, 698 pages
- Isbn
- 9780387944753
- Isbn Type
- (acid-free paper)
- Lccn
- 95005549
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- illustrations
- Record ID
- .b27119956
- System control number
- (WaOLN)1669146
Context
Context of An introduction to infinite-dimensional linear systems theory, Ruth F. Curtain, Hans ZwartEmbed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/resource/t2TRwAq729w/" typeof="Book http://bibfra.me/vocab/lite/Instance"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/t2TRwAq729w/">An introduction to infinite-dimensional linear systems theory, Ruth F. Curtain, Hans Zwart</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Instance An introduction to infinite-dimensional linear systems theory, Ruth F. Curtain, Hans Zwart
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/resource/t2TRwAq729w/" typeof="Book http://bibfra.me/vocab/lite/Instance"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/t2TRwAq729w/">An introduction to infinite-dimensional linear systems theory, Ruth F. Curtain, Hans Zwart</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>