Metric diophantine approximation on manifolds, V.I. Bernik, M.M. Dodson
Resource Information
The instance Metric diophantine approximation on manifolds, V.I. Bernik, M.M. Dodson represents a material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
The Resource
Metric diophantine approximation on manifolds, V.I. Bernik, M.M. Dodson
Resource Information
The instance Metric diophantine approximation on manifolds, V.I. Bernik, M.M. Dodson represents a material embodiment of a distinct intellectual or artistic creation found in University of Missouri Libraries.
- Label
- Metric diophantine approximation on manifolds, V.I. Bernik, M.M. Dodson
- Statement of responsibility
- V.I. Bernik, M.M. Dodson
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Baker's conjecture
- Higher dimensional manifolds
- Hausdorff measure and dimension
- Hausdorff measure
- Hausdorff dimension
- Properties of Hausdorff dimension
- Determining the Hausdorff dimension
- Hausdorff dimension on manifolds
- Upper bounds for Hausdorff dimension
- Diophantine approximation on manifolds
- Diophantine approximation and manifolds
- Smooth manifolds of dimension at least 2
- Simultaneous Diophantine approximation
- Lower bounds for Hausdorff dimension
- Regular systems
- Ubiquitous systems
- Simultaneous Diophantine approximation on manifolds
- Diophantine approximation over the p-adic field
- Introduction to p-adic numbers
- Diophantine approximation in Q[subscript p]
- Integral polynomials with small p-adic values
- Diophantine approximation in one dimension
- Applications
- Diophantine type and very well approximable numbers
- A wave equation
- The rotation number
- Dynamical systems
- Linearising diffeomorphisms
- Diophantine approximation in hyperbolic space
- Approximation in higher dimensions
- Euclidean submanifolds
- Metric Diophantine approximation on manifolds
- Khintchine's and Groshev's theorems for manifolds
- Extremal manifolds
- Khintchine and Groshev type manifolds
- Control code
- 41212802
- Dimensions
- 24 cm
- Extent
- xi, 172 pages
- Isbn
- 9780521432757
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Record ID
- .b44019415
Context
Context of Metric diophantine approximation on manifolds, V.I. Bernik, M.M. DodsonInstantiates
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/resource/ujemMO1wk6Q/" typeof="Book http://bibfra.me/vocab/lite/Instance"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/ujemMO1wk6Q/">Metric diophantine approximation on manifolds, V.I. Bernik, M.M. Dodson</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Instance Metric diophantine approximation on manifolds, V.I. Bernik, M.M. Dodson
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/resource/ujemMO1wk6Q/" typeof="Book http://bibfra.me/vocab/lite/Instance"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/ujemMO1wk6Q/">Metric diophantine approximation on manifolds, V.I. Bernik, M.M. Dodson</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>