L-functions
Resource Information
The concept L-functions represents the subject, aboutness, idea or notion of resources found in University of Missouri Libraries.
The Resource
L-functions
Resource Information
The concept L-functions represents the subject, aboutness, idea or notion of resources found in University of Missouri Libraries.
- Label
- L-functions
47 Items that share the Concept L-functions
Context
Context of L-functionsSubject of
No resources found
No enriched resources found
- Advanced analytic number theory : L-functions
- An introduction to the Langlands program
- Arithmetic of L-functions
- Arithmetic on modular curves
- Automorphic forms and L-functions for the group GL(n, R)
- Automorphic representations and L-functions for the general linear group
- Base change for GL(2)
- Cohomologie l-adique et fonctions L
- Cohomologie l-adique et fonctions L
- Eisenstein cohomology for GLn and the special values of Rankin-Selberg L-functions
- Eisenstein series and automorphic L-functions
- Eisensteinkohomologie und die Konstruktion gemischter Motive
- Eisensteinkohomologie und die Konstruktion gemischter Motive
- Elementary Dirichlet series and modular forms
- Elementary Dirichlet series and modular forms
- Elementary theory of L-functions and Eisenstein series
- Elliptic curves, modular forms, and their L-functions
- Explicit constructions of automorphic L-Functions
- Explicit constructions of automorphic L-functions
- Formes automorphes
- Iwasawa theory of elliptic curves with complex multiplication : p-adic L functions
- L-functions and the oscillator representation
- L-functions and the oscillator representation
- L-groups and the Langlands program for covering groups
- Lectures on automorphic L-functions
- Lectures on p-adic L-functions
- Les conjectures de Stark sur les fonctions L d'Artin en s=O : notes d'un cours à Orsay [de] John Tate
- Modular Calabi-Yau threefolds
- Moments, monodromy, and perversity : a diophantine perspective
- Multiple Dirichlet series, L-functions and automorphic forms
- Non-Archimedean L-functions and arithmetical Siegel modular forms
- Non-vanishing of L-functions and applications
- Random matrices, Frobenius eigenvalues, and monodromy
- Regularised integrals, sums, and traces : an analytic point of view
- Selberg's zeta-, L-, and Eisensteinseries
- Selberg's zeta-, L-, and Eisensteinseries
- Six short chapters on automorphic forms and L-functions
- Sommes exponentielles : cours à Orsay, automne, 1979
- The descent map from automorphic representations of GL(n) to classical groups
- The local Langlands conjecture for GL(2)
- The semi-simple zeta function of quaternionic Shimura varieties
- The semi-simple zeta function of quaternionic Shimura varieties
- Twisted L-functions and monodromy
- Value-distribution of L-functions
- Value-distribution of L-functions
- Zeta and L-functions in number theory and combinatorics
- p-adic L-functions and p-adic representations
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/resource/xeRlFaZhEiM/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/xeRlFaZhEiM/">L-functions</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Concept L-functions
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/resource/xeRlFaZhEiM/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/xeRlFaZhEiM/">L-functions</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>